I-VICS R5 Test Document

Introduction

<Details about Additional tests required for this Blue Print in addition to the Akraino Validation Feature Project>

This article motivates developers to adopt integration testing by explaining how to write, run, and evaluate the results of integration tests.

Akarino Test Group Information

<The Testing Ecosystem>

1. colcon is used to build and run test
2. pytest is used to eventually execute the test, generate jUnit format test result and evaluate the result
3. unit testing describes testing big picture

Overall Test Architecture

Integration tests determine if independently developed software modules work correctly when the modules are connected to each other. In ROS 2, the
software modules are called nodes.

Integration tests help to find the following types of errors:
® Incompatible interaction between nodes, such as non-matching topics, different message types, or incompatible QoS settings
® Reveal edge cases that were not touched with unit tests, such as a critical timing issue, network communication delay, disk I/O failure, and many
other problems that can occur in production environments

® Using tools like st r ess and udpr epl ay, performance of nodes is tested with real data or while the system is under high CPU/memory load,
where situations such as mal | oc failures can be detected

Test Bed

Test Framework

This section provides examples for how to use the i nt egr ati on_t est s framework. The architecture of i nt egr ati on_t est s framework is shown in
the diagram below.

blocked URL
integration_test architecture

Traffic Generator

Test API description

<Akraino common tests>

The Test inputs
Test Procedure
Expected output

Test Results

<Blueprint extension tests>

The Test inputs
Test Procedure
Expected output

Test Results

<Feature Project Tests>


https://github.com/ros2/ros2/wiki/Colcon-Tutorial
https://docs.pytest.org/en/latest/
https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/how-to-write-tests-and-measure-coverage.html
https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/process_of_apex_integration_tests.png

Integration test with a single executable

The simplest scenario is a single node. Create a package named nmy_cool _pkg in the ~/ wor kspace directory; it's recommended to use the package
creation tool.

ny_cool _pkg has an executable that prints Hel | o Wor | d to st dout . Follow the steps below to add an integration test:

1. Create a file ~/ wor kspace/ src/ nmy_cool _pkg/t est/ expect ed_out put s/ ny_cool _pkg_exe. r egex with the content Hel | o\ sWor | d
® The string in the file is the regular expression to test against the st dout of the executable
2. Under the BUI LD_TESTI NGcode block, add a callto i nt egrati on_t est s to add the test
set(MY_COOL_PKG_EXE "my_cool_pkg_exe")
add_executable(${MY_COOL_PKG_EXE} ${MY_COOL_PKG_EXE_SRC} ${MY_COOL_PKG_EXE_HEADERS})

find_package(integration_tests REQUIRED)
integration_tests(
EXPECTED_OUTPUT_DIR "${CMAKE_SOURCE_DIR}/test/expected_outputs/"

COMMANDS
"${MY_COOL_PKG_EXE}"
)
3. Build ~/ wor kspace/ , or just the nmy_cool _pkg package, using col con:
$ ade enter

ade$ cd ~/workspace/
ade$ colcon build --merge-install --packages-select my_cool_pkg
4. Run the integration test
$ ade enter
ade$ cd ~/workspace/
ade$ colcon test --merge-install --packages-select my_cool_pkg --ctest-args -R integration

Starting >>> my_cool_pkg
Finished <<< my_cool_pkg [4.79s]

Summary: 1 package finished [6.30s]
NoteUse --ctest-args -R integration to run integration tests only.

col con test parses the package tree, looks for the correct build directory, and runs the test script. col con t est generates a jUnit format test result for
the integration test.

By default col con t est gives a brief test report. More detailed information exists in ~/ wor kspace/ | og/ | at est _t est/ ny_cool _pkg, which is the
directory that holds the directories ct est , st dout , and st der r output. Note that these directory only contains output of ct est , not the output of tested
executables.

1. command. | og contains all the test commands, including their working directory, executables, arguments
2. stderr. | og contains the standard error of ct est
3. st dout . | og contains the standard output of ct est

The st dout of the tested executable is stored in the file ~/ wor kspace/ bui | d/ my_cool _pkg/test _resul ts/ my_cool _pkg
/ my_cool _pkg_exe_i ntegration_test.xunit.xmn using jUnitformat:

<?xml version="1.0" encoding="UTF-8"?>

<testsuite errors="0" failures="0" name="pytest" skips="0" tests="1" time="3.121">

<testcase classname="my_cool_pkg.build.my_cool_pkg.my_cool_pkg_exe_integration_test_Debug"
file="~/workspace/build/my_cool_pkg/my_cool_pkg_exe_integration_test_Debug.py"

line="36" name="test_executable" time="3.051783800125122">

<system-out>(test_executable_0) pid 21242:

['~/workspace/build/my_cool_pkg/my_cool_pkg_exe'] (all >; console, InMemoryHandler: test_executable_0)
[test_executable_0] Hello World

[test_executable_0] signal_handler(2)

(test_executable_0) rc 27

() tear down

</system-out>

</testcase>

</testsuite>

test _execut abl e_i corresponds to the (i +1) t h executable. In this case, only one executable is tested so i starts from 0. Note that t est _execut ab
I e_0 prints Hel | o Wor | d to st dout, which is captured by the | auncher . The output matches the regex Hel | o\ sWor | d specified in the expected
output file. The | auncher then broadcasts a SI G NT to all the test executables and marks the test as successful. Otherwise, the integration test fails.

NoteSIGINT is broadcast only if the output of the last executable matches its regex.

For detailed information about how i nt egr ati on_t est s operates, see the Q&A section below.

Integration test with multiple executables

In the my_cool _pkg example, only one executable is added to the integration test. Typically, the goal is to test the interaction between several
executables. Suppose ny_cool _pkg has two executables, at al ker and al i st ener which communicate with each other with a ROS2 topic.


https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/tree/master/src/tools/autoware_auto_create_pkg
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/tree/master/src/tools/autoware_auto_create_pkg
https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/integration-testing.html#how-to-write-integration-tests-how-does-integration-tests-work

The | auncher starts the t al ker and | i st ener at the same time. The t al ker starts incrementing the index and sending it to the | i st ener. The | i st
ener receives the index and prints it to st dout . The passing criteria for the testis is if | i st ener receives the indices 10, 15, and 20.

Here are the steps to add multiple-executable integration tests:
1. Create two files

a. ~/ wor kspace/ src/ ny_cool _pkg/test/expect ed_out puts/tal ker _exe. r egex with content . *
b. ~/ wor kspace/ src/ my_cool _pkg/test/expected_out puts/listener_exe.regex with content

2. Under the BUI LD_TESTI NGcode block, call i nt egrati on_t est s to add the test

find_package(integration_tests REQUIRED)
integration_tests(
EXPECTED_OUTPUT_DIR "${CMAKE_SOURCE_DIR}/test/expected_outputs/*

COMMANDS

"talker_exe --topic TOPIC:::listener_exe --topic TOPIC"

)

1. The character set “:::" is used as delinmter of different executables

2. ‘integration_tests’ parses the executables, argunents, and conposes a valid test python
scri pt

3. More information about the python script can be found in the
[ RA] (@ef howto-wite-integration-tests-how does-integration-tests-work) section

3. Build ~/ wor kspace/ , or just the my_cool _pkg package, using col con:
$ ade enter
ade$ cd ~/workspace/
ade$ colcon build --merge-install --packages-select my_cool_pkg
4. Run the integration test
$ ade enter
ade$ cd ~/workspace/
ade$ colcon test --merge-install --packages-select my_cool_pkg --ctest-args -R integration
Starting >>> my_cool_pkg
Finished <<< my_cool_pkg [20.8s]

Summary: 1 package finished [22.3s]

When the environment is properly configured, after 20 seconds, the integration test shall pass. Similar to the single node example, the | auncher starts the
tal ker and | i st ener atthe same time. The | auncher periodically checks the st dout of each executable.

The regex of t al ker is . *, which always matches when the first output of t al ker is captured by launcher. The regex of | i st ener is 10, 15, and 20.
After all entries in this regex are matched, a SIGINT is sent to all commands and the test is marked as successful.

The locations of output files are the same with single executable example. Output of ct est isis ~/ wor kspace/ | og/ | at est _t est/ ny_cool _pkg/ .
Output of tested executables is stored in ~/ wor kspace/ bui | d/ my_cool _pkg/test _resul ts/ ny_cool _pkg/ in jUnit format.

NoteBy the time SIGINT is sent, all the regex have to be successfully matched in the output. Otherwise the test is marked as failed. For example, if the
regex for talker is 30, the test will fail.

Use executables from another package

Sometimes an integration test needs to use executables from another package. Suppose ny_cool _pkg needs to test with the t al ker and | i st ener defi
ned in denp_nodes_cpp. These two executables must be exported by denp_nodes_cpp and then imported by ny_cool _pkg.

When declaring the test, a namespace must be added before t al ker and | i st ener to indicate that executables are from another package.
Use the following steps to add an integration test:

1. Add <bui | dt ool _depend>anent _cnake</ bui | dt ool _depend> to ~/ wor kspace/ src/ deno_nodes_cpp/ package. xm
2. In~/ wor kspace/ src/ denmo_nodes_cpp/ CMakeLi st s. t xt, export the executable target before calling anent _package()
instal(TARGETS talker EXPORT talker
DESTINATION lib/${PROJECT_NAME})
install(TARGETS listener EXPORT listener
DESTINATION lib/${PROJECT_NAMEY})
find_package(ament_cmake REQUIRED)
ament_export_interfaces(talker listener)
3. Create two regex files
a. ~/ wor kspace/ src/ ny_cool _pkg/test/expect ed_out put s/ deno_nodes_cpp__t al ker. r egex with content . *
b. ~/ wor kspace/ src/ my_cool _pkg/test/expect ed_out puts/deno_nodes_cpp__| i stener.regex with content 20
4. In ~/ wor kspace/ src/ my_cool _pkg/ package. xm , add the dependency to deno_nodes_cpp
<test_depend>demo_nodes_cpp</test_depend>
5. Under the BUI LD_TESTI NG code block in ~/ wor kspace/ src/ ny_cool _pkg/ CMakeLi sts. txt, calli ntegrati on_t ests to add the test

find_package(integration_tests REQUIRED)



find_package(demo_nodes_cpp REQUIRED) # this line imports targets(talker) defined in namespace demo_nodes_cpp
integration_tests(
EXPECTED_OUTPUT_DIR "${CMAKE_SOURCE_DIR}/test/expected_outputs/*

COMMANDS
"demo_nodes_cpp::talker:::demo_nodes_cpp::listener" # format of external executable is namespace::executable [--arguments]
)
6. Build ~/ wor kspace/, or just the ny_cool _pkg package, using col con:
$ ade enter

ade$ cd ~/workspace/
ade$ colcon build --merge-install --packages-select my_cool_pkg
7. Run the integration test
$ ade enter
ade$ cd ~/workspace/
ade$ colcon test --merge-install --packages-select my_cool_pkg --ctest-args -R integration

When anent _export_interfaces(tal ker |istener) iscalledindeno_nodes_cpp, ament generates a deno_nodes_cppConfi g. cmake file
which is used by f i nd_package. The namespace in this file is denmo_nodes_cpp. Therefore, to use executable in denp_nodes_cpp, a namespace and
;. has to be added.

The format of an external executable is nanespace: : execut abl e --argunents. Thei ntegrati on_t ests function sets the regex file name as nam
espace__execut abl e. r egex. One exception is that no namespace is needed for executable defined in the package that adds this integration test.

Add multiple integration tests in one package

If my_cool _pkg has multiple integration tests added with the same executable but different parameters, SUFFI X has to be used when calling i nt egr at i
on_tests.

Suppose ny_cool _pkg has an executable say_hel | o which prints Hel | o {argv[ 1]} to the screen. Here are the steps to add multiple integration
tests:

1. Create two regex files
a. ~/ wor kspace/ src/ ny_cool _pkg/test/expected_out puts/say_hel |l o_Alice. regex with content Hel | o\ sAl i ce
b. ~/ wor kspace/ src/ my_cool _pkg/test/expect ed_out put s/ say_hel | o_Bob. r egex with content Hel | o\ sBob
2. Callintegration_tests toadd integration test
integration_tests(
EXPECTED_OUTPUT_DIR "${CMAKE_SOURCE_DIR}/test/expected_outputs/*
COMMANDS "say_hello Alice"
SUFFIX "_Alice"

integration_tests(
EXPECTED_OUTPUT_DIR "${CMAKE_SOURCE_DIR}/test/expected_outputs/*
COMMANDS "say_hello Bob"
SUFFIX "_Bob"
3. Build ~/ wor kspace/, or just the ny_cool _pkg package, using col con:
$ ade enter
ade$ cd ~/workspace/
ade$ colcon build --merge-install --packages-select my_cool_pkg
4. Run the integration test
$ ade enter
ade$ cd ~/workspace/
ade$ colcon test --merge-install --packages-select my_cool_pkg --ctest-args -R integration

By specifying SUFFI X, i nt egr ati on_t est s adds the correct suffix to the regex file path.

Test Dashboards

Single pane view of how the test score looks like for the Blue print.

Total Tests Test Executed Pass Fail In Progress

Additional Testing

Bottlenecks/Errata



	I-VICS R5 Test Document

