# **CPS Robot Blueprint family**

#### Overview

Robotics is an important tool for achieving the SDGs. Workers will be able to focus on decent work and new innovation by improvement of labor productivity using robot, as a result, they can move toward new economic growth.

However, there are industries where it is difficult to apply current robotics. For example, agriculture, restaurant, food factory, etc..

The biggest challenge current robotics faces in the industry is how to control elastic and non-uniform object under variable circumstance.

To apply robotics to any industry easily, this blueprint family develop and provide open software stack which can achieve the challenge.

## Family Template

| Case Attributes                        | Description                                                                                     | Informational |
|----------------------------------------|-------------------------------------------------------------------------------------------------|---------------|
| Туре                                   | New or Modification to an existing submission                                                   |               |
| Blueprint Family - Proposed Name       | Robotics for elastic and non-uniform object under variable circumstance Blueprint Family        |               |
|                                        | CPS for Robot Blueprint Family                                                                  |               |
|                                        | Cognitive CPS for Robot Blueprint Family                                                        |               |
| Use Case                               | Robot for restaurant and ready-to-eat industry                                                  |               |
|                                        | Robot for agricultural forestry industries and fishers                                          |               |
| Blueprint proposed                     | Robot basic architecture based on Sensor-rich soft end-effector system (SSES)                   |               |
| Initial POD Cost (capex)               | \$50K/one robot hardware                                                                        |               |
| Scale                                  | Expandable to automate the drug industry, garment factories, and serviceability industries      |               |
| Applications                           | Robots control elastic and non-uniform object under variable circumstance                       |               |
| Power Restrictions                     | Need approx.500~1500W per one robot arm.                                                        |               |
| Preferred Infrastructure orchestration | Robot App: ROS2, Node-Red, Python, MQTTprocessingPLC                                            |               |
|                                        | OS:Ubuntu                                                                                       |               |
|                                        |                                                                                                 |               |
|                                        | In the future, automatic calibration (using GPS signals), including measurement equipment, etc. |               |
| Additional Details                     | NA                                                                                              |               |

#### Blueprints in this Family

| Blueprint                              | PTL | TA Family Coordinator<br>Nominee (Y/N) |
|----------------------------------------|-----|----------------------------------------|
| Robot basic architecture based on SSES |     |                                        |
|                                        |     |                                        |

#### **Proposal Presentation**



## ONE Summit 2022 Presentation



# Akraino Fall Summit 2022 Presentations



