
Smart Data Transaction for CPS Installation Guide

Introduction
How to Use This Document
Deployment Architecture
Pre-Installation Requirements

Hardware Requirements
Network Requirements
Software Prerequisites

Installation
Setting Up the Deploy Node
Preparing the Master Node
Creating the Docker Registry
Preparing Edge Nodes
Building the Custom Services
Starting the Cluster
Adding Edge Nodes to the Cluster
Starting EdgeX
Sensor Nodes

Verifying the Setup
Developer Guide and Troubleshooting

EdgeX Service Configuration UI
EdgeX API Access
Enabling and Disabling Optional Services
Debugging Failures
Reporting a Bug

Uninstall Guide
Stopping EdgeX
Removing Edge Nodes
Stopping Kubernetes
Stopping and Clearing the Docker Registry
Uninstalling Software Components
Removing Configuration and Temporary Data

Troubleshooting
Confirming Node and Service Status
Accessing Logs

Maintenance
Stopping and Restarting EdgeX Services
Stopping and Restarting the Kubernetes Cluster
Adding and Removing Edge Nodes
Updating the Software
Rebuilding Custom Services

License
References
Definitions, Acronyms and Abbreviations

Introduction
This guide provides instructions for installing and configuring the Smart Data Transaction for CPS blueprint, and also includes recommended hardware and
software requirements for the blueprint. The guide describes a minimal installation of the blueprint consisting of a single "master" node and two "edge"
nodes, with directions on how the number of nodes can be modified as needed.

How to Use This Document
This document assumes the reader is familiar with basic UNIX command line utilities and . Familiarity with and may also be Kubernetes Ansible Docker
useful. To interact with the EdgeX micro-services in a running setup, use the APIs as described in the . Sensor data can be EdgeX documentation
observed through the MQTT broker mosquitto and its command line utility .mosquitto_sub

Start by reviewing the deployment architecture and requirements in the following sections, then follow the steps in the Installation section to set up the
software and start it running. Confirm the services are functioning as expected by following the instructions in the Verifying the Setup section. The later
sections in this document describe other tasks that can be performed on a running setup, alternate configuration options, and how to shut down and
uninstall the software.

Deployment Architecture
The diagram below shows the major components and relationships in a deployment of this blueprint.

https://kubernetes.io/docs/home/
https://docs.ansible.com/ansible/latest/index.html
https://docs.docker.com/
https://docs.edgexfoundry.org/2.1/

Deployment, as well as other tasks such as starting and stopping the cluster, is coordinated through a set of Ansible playbooks. (Ansible playbooks are a
system used by the Ansible tool for describing the desired state of a system. In many ways they are similar to shell scripts. For more details see the
Ansible documentation.) The playbooks are run exclusively by the deploy node, and they execute commands on the deploy node, the master node, and in
some cases on the edge nodes. Once the nodes are set up, most activity is carried out by Kubernetes. Kubernetes is configured by the playbooks and told
to start or stop services on the edge nodes. These services are run in containers, and the images for these containers are stored in a local Docker registry.
There are containers for the Kubernetes components themselves, plus Flannel (a component which provides networking inside the Kubernetes cluster),
EdgeX Foundry services, and two custom services (and) built using the EdgeX SDKs.sync-app device-lora

Note that the deploy node and the master node can be the same host or virtual machine.

The sensor nodes are not shown in the above diagram as they are not envisioned as being connected to the network, and are not configured by the
playbooks from the deploy node. See the Sensor Nodes section of Installation for an example of how sensor nodes may be setup.

Pre-Installation Requirements

Hardware Requirements

The table below shows the recommended minimum specifications for the hardware in the testing installation. It is possible that lower spec hardware could
be used for many of the nodes. The sensor node hardware in particular is specific to the testing installation and could be swapped out with any number of
other platforms as long as LoRa connectivity was possible using the hardware.

Master, Deploy Edge Sensor

Platform VM running on commercial grade PC NVidia Jetson Nano Raspberry Pi 3

CPU x86-64, Intel i5 or similar ARM 64bit Cortex-A57 ARM 32bit Cortex A-53

Cores 2 4*

2 cores should be possible

4*

1 core should be possible

RAM 4 GB 2 GB 1 GB

Storage 128 GB Hard Disk space 32 GB SD Card 32 GB SD Card

Network 1x Ethernet 1x Ethernet 1x Ethernet*

*for provisioning

LoRa N/A LRA-1 USB dongle LRA-1 USB dongle

Sensor N/A N/A DHT-11 GPIO temperature/humidity sensor

At a minimum one node is required for the master and deploy roles together, and at least one edge node and one sensor node. The testing installation
uses two edge and sensor nodes.

Network Requirements

All nodes are expected to have IP connectivity to one another during installation and normal operation, with the exception of the sensor nodes. In the
installation described here, all the nodes are connected to a private wired network operating at 100Mbps or better. However, there are no strict bandwidth
or latency requirements.

During initial software installation all of the nodes will require access to the internet to download required software packages. Once the required software
packages are installed and the docker registry is started, only the deploy node will need further access to the internet (unless, of course, software
packages need to be changed or updated). The deploy node will need to access the internet when pulling upstream images to install in the docker registry,
and when building docker images for custom services. Of course, if external tools are going to be used to access the collected data through the MQTT
broker (Mosquitto), those tools will need network access to the master node.

When the edge node services are started, images will be downloaded from the docker registry on the master node to the edge nodes, so bandwidth may
be a consideration if, for example, the edge nodes are accessed over a mobile network.

Software Prerequisites

The list below shows the required software for each node type prior to beginning the installation process.

Deploy node
Ubuntu 20.04
Ansible 2.11.7

Master node
Ubuntu 20.04

Edge node
Ubuntu 20.04

Sensor node
Rasbian 11.1

Note that Ansible 2.9.6 is installed from the regular Ubuntu repository on Ubuntu 20.04, but needs to be upgraded from the Ansible repository to support
the collection used by this blueprint. The playbook can be run with Ansible 2.9.6 and will update Ansible to the kubernetes.core setup_cicd.yml
required version.

Additional Installed Software Packages

Note that the installation process will install several more software packages through Ansible playbooks. These are listed below for reference. Packages
included by default in an install of Ubuntu 20.04 server are not included. The version numbers are those that are available/installed at the time of writing by
the Ansible playbooks on Ubuntu 20.04.

Deploy node
make 4.2.1, build-essential 12.8, python3-pip 20.0.2
Ansible collections , , community.docker kubernetes.core community.crypto
Docker (docker.io) 20.10.7

Master node
Docker (docker.io) 20.10.7
python3-pip 20.0.2
Python packages and cryptography kubernetes
mosquitto 2.0.14, mosquitto-clients 2.0.14
Kubernetes (kubectl, kubelet, kubeadm) 1.22.6
Flannel 0.16.3, flannel-cni-plugin 1.0.1 (Note: These are containers installed via Kubernetes through a config file)

Edge node
Docker (docker.io) 20.10.7
Kubernetes (kubelet, kubeadm) 1.22.6 (kubectl may be installed for debugging purposes)

Installation

Setting Up the Deploy Node

The deploy node will coordinate all other installation and operations, so it needs to be set up first. In the test installation, the deploy node is a VM running
on a x86 PC, with Ubuntu Linux 20.04 installed. In addition, the tool must be installed. The Ansible tool provided in the Ubuntu software repository Ansible
is a slightly older version which needs to be upgraded, but it is sufficient to execute the playbook, which will install the newer version setup_deploy.yml
of Ansible and other tools required on the deploy node. But before running that playbook you need to configure a few things described in the section below.

https://docs.ansible.com/ansible_community.html

The playbooks for use on the deploy node are stored in the directory of the source repository. These playbooks refer to other files in deploy/playbook
the source code, so the entire directory tree should be copied onto the deploy node. The easiest way to do this is by cloning the git repository directly as
shown below:

git clone repository-url

Note, using the option can save some disk space if you don't need to modify the source code.--depth=1

The git command will create a directory in the directory where it is run named after the repository. Inside the new directory will be the deploy/playbook
directory. Unless noted otherwise, the commands below should be run in that directory.

Node and Cluster Configuration

Before running the playbook, modify the file in the directory with the host names and IP addresses of setup_deploy.yml hosts deploy/playbook
the edge nodes in your cluster. Also update the entry for the master node's host if it is not the same as the deploy node.

all:
 hosts:
 children:
 master:
 hosts:
 localhost:
 edge_nodes:
 hosts:
 edge1: # Name of first edge node
 ip: 192.168.2.21 # IP address of first edge node
 lora_id: 1
 edge2: # Name of second edge node
 ip: 192.168.2.25 # IP address of second edge node
 lora_id: 4

In addition, if the master node is not the same as the deploy node, remove the line wherever it follows in the connection: local hosts: master
playbooks in .deploy/playbook

In the file in the directory, set the value to the IP address of the master node. Note that master.yml deploy/playbook/group_vars/all master_ip
this is required even if the master node is the same as the deploy node.

master_ip: 192.168.2.16

Set Up the Deploy Node

The account which runs the deploy playbooks will need to be able to use to execute some commands with super-user permissions. The following sudo
command can be used (by root or another user which already has super-user permissions) to enable the use of sudo for a user:

sudo usermod -aG sudo username

After setting IP addresses and node names in the and files, you can run the playbook using the command master.yml hosts setup_deploy.yml
below.

ansible-playbook -i ./hosts setup_deploy.yml --ask-become-pass

This will add the node names and addresses to the deploy node's file as well as upgrade the version of Ansible if necessary. It will also /etc/hosts
install Ansible collections , , and , required by the other Ansible playbooks in this blueprint.community.docker kubernetes.core community.crypto

Ansible will be installed using root permissions on the deploy node, so supply the password (by default the user's password) when prompted for the sudo
"become" password.

Preparing the Master Node

If the master node is not on the same host as the deploy node, the user that runs the deploy playbooks must have an account on the master host under
the same name, and that account must have privileges like the account on the deploy node (see above). Also, the account should have password-sudo
less SSH login configured. See the description of configuring password-less login for the edge node administrator account in the Preparing Edge Nodes
section.

The following command will prepare the master node for use:

ansible-playbook -i ./hosts master_install.yml --ask-become-pass

This playbook requires the password for sudo on the master node (the "become" password).

It will perform the following initialization tasks:

Make sure there are entries for the master and edge node names in /etc/hosts
Install required software packages including Docker, Kubernetes, pip, and mosquitto
Install Python packages used by other playbooks (and)kubernetes cryptography
Make sure the user can run Docker commands
Prepare basic configuration for Docker and Kubernetes

Set up a user name and password for the MQTT service

Note, you can customize the MQTT user name and password using the and variables in the mqtt_user mqtt_pwd docker/playbook/group_vars
 file. By default the user name is "edge" and the password "edgemqtt". These credentials must be used if you want to, for example, use /all/mqtt.yml

the command to monitor incoming MQTT messages from the edge nodes.mosquitto_sub

Master Node Kubernetes Requirements

Kubernetes' initialization tool requires that swap be disabled on nodes in the cluster. Turn off swap on the master mode by editing the kubeadm /etc
 file (using sudo) and commenting out the line with "swap" as the third parameter:/fstab

/swap.img none swap sw 0 0

In addition, if you have proxy settings will warn that you should disable the proxy for cluster IP addresses. The default cluster IP ranges kubeadm 10.96.0
 and should be added to the and variables in if necessary..0/12 10.244.0.0/16 no_proxy NO_PROXY /etc/environment

no_proxy=localhost,127.0.0.0/8,192.168.2.0/24,10.96.0.0/12,10.244.0.0/16,*.local,*.fujitsu.com
NO_PROXY=localhost,127.0.0.0/8,192.168.2.0/24,10.96.0.0/12,10.244.0.0/16,*.local,*.fujitsu.com

Creating the Docker Registry

This blueprint sets up a private Docker registry on the master node to hold all the images which will be downloaded to the edge nodes. The following
command with start the registry. This command also creates and installs a cryptographic key that is used to identify the registry to the edge nodes.

ansible-playbook -i ./hosts start_registry.yml --ask-become-pass

Once this command has been run the registry will run as a service and will automatically restart if the master node reboots for some reason. If you need to
stop the registry or clear its contents, see the instructions in the Stopping and Clearing the Docker Registry section of the Uninstall Guide.

Note that if you stop and restart the registry new keys will be generated and you will need to run the playbook again to copy them to edge_install.yml
the edge nodes.

Populating the Registry

The following command will download the required images from their public repositories and store copies in the private repository:

ansible-playbook -i ./hosts pull_upstream_images.yml

Note that this process can take some time depending on the speed of the internet connection from the master node.

If the version of Kubernetes or Flannel changes you will need to populate the registry with updated images using the above command again. Note that you
can force Kubernetes to use a specific patch version by editing the file and adding the line deploy/playbook/k8s/config.yml kubernetesVersion

 (with the version you require) under the the line, and running the playbook again. : v1.22.7 kind: ClusterConfiguration master_install.yml
(You can also make the same change to directly to avoid having to run again.)~/.lfedge/config.yml master_install.yml

Populating the registry will leave extra copies of the downloaded images on the master node. You can remove these using the following command (the
images will remain in the private registry):

ansible-playbook -i ./hosts clean_local_images.yml

Preparing Edge Nodes

Add an administrative account to all the edge nodes. This account will be used by the deploy node when it needs to run commands directly on the edge
nodes (e.g. for installing base software, or for joining or leaving the cluster). The following commands run on each edge node will add a user account
named "edge" and add it to the group of users with privileges.sudo

sudo adduser edge
sudo usermod -aG sudo edge

Note, if you use an administrative account with a different name, change the variable in the group in the ansible_user edge_nodes deploy/playbook
 file to match the user name you are using./hosts

The deploy node needs to log in via SSH to the edge nodes using a cryptographic key (rather than a password), so that a password does not need to be
provided for every command. Run the following command on the deploy node to create a key called "edge" for the administrative user.

ssh-keygen -t ed25519 -f ~/.ssh/edge

The parameter is the name and location of the private key file that will be generated. If you use a different name or location, change the ~/.ssh/edge ans
 variable for the group in to match.ible_ssh_private_key_file edge_nodes deploy/playbook/hosts

Once the key files have been created, the following command can be run from the deploy node to copy the key to each edge node so a password will not
be required for each login. (The administrative user's password will be requested when running this command.)

ssh-copy-id -i ~/.ssh/edge.pub edge@nodename

After the administrative account has been created, the following command will perform initial setup on all edge nodes configured in the deploy/playbook
 file:/hosts

ansible-playbook -i ./hosts edge_install.yml

The playbook will perform the following initialization tasks:

Make sure there is an entry for the master node in /etc/hosts
Install required software packages including Docker and kubelet
Make sure the user can run Docker commands
Configure Docker, including adding the certificates to secure access to the private registry

Edge Node Kubernetes Requirements

Like the master node, swap should be disabled and the cluster IP address ranges should be excluded from proxy processing if necessary.

Note that on the Jetson Nano hardware platform has a service called that acts as swap and needs to be disabled. Use the following nvzramconfig
command to disable it:

sudo systemctl disable nvzramconfig.service

Building the Custom Services

At this time, images for the two custom services, and , need to be built from source and pushed to the private Docker registry. sync-app device-lora
(In the future these images should be available on Docker Hub or another public registry.) Use the following playbooks from the directory cicd/playbook
on the deploy node to do so.

This command will install components that support cross-compiling the microservices for ARM devices:

ansible-playbook -i ./hosts setup_build.yml

This command will build local docker images of the custom microservices:

ansible-playbook -i ./hosts build_images.yml

The build command can take some time, depending on connection speed and the load on the deploy host, especially the compilation of cross-compiled
images.

This command will push the images to the private registry:

ansible-playbook -i ./hosts push_images.yml

At time of writing this step will also create some workaround images required to enable EdgeX security features in this blueprint's Kubernetes
configuration. Hopefully, these images will no longer be needed once fixes have been made upstream.

Starting the Cluster

With the base software installed and configured on the master and edge nodes, the following command will start the cluster:

ansible-playbook -i ./hosts init_cluster.yml --ask-become-pass

This command only starts the master node in the Kubernetes cluster. The state of the master node can be confirmed using the kubectl get node
command on the master node.

admin@master:~$ kubectl get node
NAME STATUS ROLES AGE VERSION
master Ready control-plane,master 14m v1.22.7

Adding Edge Nodes to the Cluster

Once the cluster is initialized, the following command will add all the configured edge nodes to the cluster:

ansible-playbook -i ./hosts join_cluster.yml

The command on the master node can be used to confirm the state of the edge nodes.kubectl get node

admin@master:~$ kubectl get node
NAME STATUS ROLES AGE VERSION
edge1 Ready <none> 2m50s v1.22.7
edge2 Ready <none> 2m45s v1.22.7
master Ready control-plane,master 17m v1.22.7

Starting EdgeX

After adding the edge nodes to the cluster, the following command will start the EdgeX services on the edge nodes:

ansible-playbook -i ./hosts edgex_start.yml

You can confirm the status of the EdgeX microservices using the command on the master node. (EdgeX micro-service containers are kubectl get pod
grouped into one Kubernetes "pod" per node.)

admin@master:~$ kubectl get pod
NAME READY STATUS RESTARTS AGE
edgex-edge1-57859dcdff-k8j6g 20/20 Running 16 1m31s
edgex-edge2-5678d8fbbf-q988v 20/20 Running 16 1m26s

Note, during initialization of the services you may see some containers restart one or more times. This is part of the timeout and retry behavior of the
services waiting for other services to complete initialization and does not indicate a problem.

Sensor Nodes

In the test installation sensor nodes have been constructed using Raspberry Pi devices running a Python script as a service to read temperature and
humidity from a DHT-1 sensor, and forward those readings through an LRA-1 USB dongle to a pre-configured destination.

The Python script is located in , and an example service definition file for use with systemd is in the same sensor/dht2lra.py dht2lra.service
directory.

The destination edge node is configured by connecting to the LRA-1 USB dongle, for example using the program (tio needs to be installed using tio sudo
):apt-get install tio

pi@raspi02:~ $ sudo tio /dev/ttyUSB0
[tio 09:31:52] tio v1.32
[tio 09:31:52] Press ctrl-t q to quit
[tio 09:31:52] Connected
i2-ele LRA1
Ver 1.07.b+
OK
>

At the ">" prompt, enter , where N is the number in the variable for the edge node in . Then enter the dst=N lora_id deploy/playbook/hosts ssave
command and disconnect from the dongle (using in the case of tio). The destination ID will be stored in the dongle's persistent memory (power Ctrl+t q
cycling will not clear the value).

Running the script, either directly with , or using the service, will periodically send readings to the edge node. These readings python ./dht2lra.py
should appear in the database and be possible to monitor using the channel. For example, the following core-data edgex-events-nodename
command run on the master node should show the readings arriving at an edge node named "edge1":

mosquitto_sub -t edgex-events-edge1 -u edge -P edgemqtt

Verifying the Setup
Test cases for verifying the blueprint's operation are provided in the directory. These are scripts which can be executed cicd/tests Robot Framework
using the tool. In addition, the directory contains playbooks supporting setup of a -based automated testing environment robot cicd/playbook Jenkins
for CI/CD. For more information, consult the files in those directories.README.md

Developer Guide and Troubleshooting

EdgeX Service Configuration UI

The configuration parameters of EdgeX micro-services can be accessed through a Consul server on each edge node. The UI is accessible at the address h
. The node address is automatically assigned by Kubernetes and can be confirmed using the ttp:// :8500/uinode-address kubectl get node -

 command on the master node.o wide

In order to access the configuration UI a login token is required. This can be acquired using the script in the get-consul-acl-token.sh edgex
directory. Execute it as follows and it will print out the Consul access token:

get-consul-acl-token.sh pod-name

The parameter is the name of the EdgeX pod running on the node. This can be obtained with the command on the master pod-name kubectl get pod
node. The name of the pod will be shown in the first column of the output, and will be "edgex- -..."nodename

Access the UI address through a web browser running on the master node, and click on the "log in" button in the upper right. You will be prompted to enter
the access token. Copy the access token printed by the script into the text box and press enter to log in to the UI. See the get-consul-acl-token.sh E

 and for more information.dgeX documentation Consul UI documentation

https://robotframework.org
https://www.jenkins.io
https://docs.edgexfoundry.org/2.1/microservices/configuration/ConfigurationAndRegistry/#web-user-interface
https://docs.edgexfoundry.org/2.1/microservices/configuration/ConfigurationAndRegistry/#web-user-interface
https://www.consul.io/intro/getting-started/ui.html

EdgeX API Access

The EdgeX micro-services each support REST APIs which are exposed through an API gateway running on . The REST https:// :8443node-address
APIs are documented in the , and they are mapped to URLs under the API gateway address using path names based on the names EdgeX documentation
of each micro-service. So, for example, the service's interface can be accessed through core-data ping https:// :8443/core-datanode-address

. A partial list of these mappings can be found in the ./api/v2/ping EdgeX introduction to the API gateway

Note that the blueprint does not automatically generate signed certificates for the API gateway, so the certificate it uses by default will cause warnings if
accessed using a web browser and require the option if using the tool.-k curl

There is more information about the API gateway in the .EdgeX documentation

Enabling and Disabling Optional Services

Three EdgeX micro-services can be enabled and disabled using variables in the file. Set the deploy/playbook/group_vars/all/edgex.yml
variable to to enable the micro-service the next time the playbook is run. Set the variable to to disable that micro-service. true edgex_start.yml false
The micro-service controlling variables are listed below:

: Enable or disable the service, provided by EdgeX Foundry, used for testing.device_virtual device-virtual
: Enable or disable the service, one of the custom services provided by this blueprint, which provides support for device_lora device-lora

receiving readings and sending commands to remote sensors over LoRa low-power radio links.
: Enable or disable the application service, the other custom service provided by this blueprint, which provides a way to sync_app sync-app

forward sensor data to other edge nodes.

Debugging Failures

Consult the sections under Troubleshooting for commands to debug failures. In particular, using the commands described in Accessing Logs, kubectl
and changing the log levels of services using the configuration UI described above, which can change the logging level of running services, can be useful.

Reporting a Bug

Contact the Smart Data Transaction for CPS mailing list at sdt-blueprint@lists.akraino.org to report potential bugs or get assistance with problems.

Uninstall Guide

Stopping EdgeX

The EdgeX services can be stopped on all edge nodes using the playbook. (It is not currently possible to stop and start the services on edgex_stop.yml
individual nodes.)

ansible-playbook -i ./hosts edgex_stop.yml

Confirm that the services have stopped using the command on the master node. It should show no pods in the default namespace.kubectl get pod

After stopping the EdgeX services it is possible to restart them using the playbook as usual. Note, however, that the pod names and edgex_start.yml
access tokens will have changed.

Removing Edge Nodes

The edge nodes can be removed from the cluster using the following command:

ansible-playbook -i ./hosts delete_from_cluster.yml

This command should be run before stopping the cluster as described in the following section, in order to provide a clean shutdown. It is also possible to re-
add the edge nodes using , perhaps after editing the configuration in the file.join_cluster.yml hosts

Stopping Kubernetes

Kubernetes can be stopped by running the following command. Do this after all edge nodes have been removed.

ansible-playbook -i ./hosts reset_cluster.yml --ask-become-pass

Stopping and Clearing the Docker Registry

If you need to stop the private Docker registry service for some reason, use the following command:

ansible-playbook -i ./hosts stop_registry.yml

https://docs.edgexfoundry.org/2.1/api/Ch-APIIntroduction/
https://docs.edgexfoundry.org/2.1/security/Ch-APIGateway/#resource-mapping-between-edgex-microservice-and-api-gateway
https://docs.edgexfoundry.org/2.1/security/Ch-APIGateway/#using-api-gateway
https://docs.edgexfoundry.org/2.1/microservices/device/virtual/Ch-VirtualDevice/

With the registry stopped it is possible to remove the registry entirely. This will recover any disk space used by images stored in the registry, but means
that pull_upsteam_images.yml, build_images.yml, and push_images.yml will need to be run again.

ansible-playbook -i ./hosts remove_registry.yml

Uninstalling Software Components

Installed software components can be removed with . See the list of installed software components earlier in this sudo apt remove package-name
document. Python packages (and) can be removed with the command.cryptography kubernetes pip uninstall

Ansible components installed with ansible-galaxy (, ,) can be removed by deleting the community.docker kubernetes.core community.crypto
directories under on the deploy node.~/.ansible/collections/ansible_collections

Removing Configuration and Temporary Data

This blueprint stores configuration and data in the following places. When uninstalling the software, these folders and files can also be removed, if present,
on the master, deploy and edge nodes.

Master node:
~/.lfedge
/opt/lfedge
/etc/mosquitto/conf.d/edge.conf
/usr/share/keyrings/kubernetes-archive-keyring.gpg

Edge node:
/opt/lfedge
/etc/docker/certs.d/master:5000/registry.crt
/usr/local/share/ca-certificates/master.crt
/etc/docker/daemon.json
/usr/share/keyrings/kubernetes-archive-keyring.gpg

Deploy node:
/etc/profile.d/go.sh
/usr/local/go
~/edgexfoundry

Troubleshooting

Confirming Node and Service Status

The command can be used to check the status of most cluster components. will show the health of the master and edge kubectl kubectl get node
nodes, and will show the overall status of the EdgeX services. The command can be used to kubectl get pod kubectl describe pod pod-name
get a more detailed report on the status of a particular pod. The EdgeX configuration UI, described in the section EdgeX Service Configuration UI above,
also shows the result of an internal health check of all EdgeX services on the node.

Accessing Logs

The main tool for accessing logs is kubectl logs, run on the master node. This command can be used to show the logs of a running container:

kubectl logs -c container-name pod-name

It can also be used to check the logs of a container which has crashed or stopped:

kubectl logs --previous -c container-name pod-name

And it can be used to stream the logs of a container to a terminal:

kubectl logs -c -fcontainer-name pod-name

The container names can be found in the output of or in the file (the names of the entries kubectl describe pod edgex/deployments/edgex.yml
in the list).containers

For the rare cases when the Kubernetes log command does not work, it may be possible to use the command on the node you wish to docker log
debug.

Maintenance

Stopping and Restarting EdgeX Services

As described in the Uninstall Guide subsection Stopping EdgeX, the EdgeX services can be stopped and restarted using the and edgex_stop.yml edge
 playbooks.x_start.yml

Stopping and Restarting the Kubernetes Cluster

Similar to stopping and restarting the EdgeX services, the whole cluster can be stopped and restarted by stopping EdgeX, removing the edge nodes,
stopping Kubernetes, starting Kubernetes, adding the edge nodes, and starting EdgeX again:

ansible-playbook -i ./hosts edgex_stop.yml

ansible-playbook -i ./hosts delete_from_cluster.yml

ansible-playbook -i ./hosts reset_cluster.yml --ask-become-pass

ansible-playbook -i ./hosts init_cluster.yml --ask-become-pass

ansible-playbook -i ./hosts join_cluster.yml

ansible-playbook -i ./hosts edgex_start.yml

Adding and Removing Edge Nodes

Edge nodes can be added an removed by stopping the cluster and editing the file. The anddeploy/playbook/hosts master_install.yml
 playbooks need to be run again to update and certificates on any added nodes.edge_install.yml /etc/hosts

Updating the Software

Running setup_deploy.yml, master_install.yml, and edge_install.yml playbooks can be used to update software packages if necessary. Note that
Kubernetes is specified to use version 1.22 to avoid problems that might arise from version instability, but it should be possible to update if so desired.

Rebuilding Custom Services

The custom services can be rebuilt by running the playbook in . After successfully building a new version of a build_images.yml cicd/playbook
service, use push_images.yml to push the images to the private Docker registry. The source for the services is found in and edgex/sync-app edgex

./device-lora

License
The software provided as part of the blueprint is licensed under the Apache License, Version 2.0 (the "License");Smart Data Transaction for CPS

You may not use the content of this software bundle except in compliance with the License.

You may obtain a copy of the License at < >https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

The synchronization application and LoRa device service are linked with other Go packages/components when compiled, which are each covered by their
own licenses, listed below. Other components downloaded and installed during the blueprint's installation process are covered by their own licenses.

Synchronization Application

The synchronization application is linked with the following packages when compiled:

Package License
Type

License URL

bitbucket.org/bertimus9/systemstat MIT https://bitbucket.org/bertimus9/systemstat/src/master/LICENSE

github.com/armon/go-metrics MIT https://github.com/armon/go-metrics/blob/master/LICENSE

github.com/cenkalti/backoff MIT https://github.com/cenkalti/backoff/blob/master/LICENSE

github.com/diegoholiveira/jsonlogic MIT https://github.com/diegoholiveira/jsonlogic/blob/master/LICENSE

github.com/eclipse/paho.mqtt.golang BSD-3-
Clause

https://github.com/eclipse/paho.mqtt.golang/blob/master/LICENSE

github.com/edgexfoundry/app-functions-sdk-go/v2 Apache-2.0 https://github.com/edgexfoundry/app-functions-sdk-go/blob/master/v2/LICENSE

https://www.apache.org/licenses/LICENSE-2.0
https://bitbucket.org/bertimus9/systemstat/src/master/LICENSE
https://github.com/armon/go-metrics/blob/master/LICENSE
https://github.com/cenkalti/backoff/blob/master/LICENSE
https://github.com/diegoholiveira/jsonlogic/blob/master/LICENSE
https://github.com/eclipse/paho.mqtt.golang/blob/master/LICENSE
https://github.com/edgexfoundry/app-functions-sdk-go/blob/master/v2/LICENSE

github.com/edgexfoundry/app-functions-sdk-go/v2
/internal/etm

MIT https://github.com/edgexfoundry/app-functions-sdk-go/blob/master/v2/internal
/etm/LICENSE

github.com/edgexfoundry/go-mod-bootstrap/v2 Apache-2.0 https://github.com/edgexfoundry/go-mod-bootstrap/blob/master/v2/LICENSE

github.com/edgexfoundry/go-mod-configuration/v2 Apache-2.0 https://github.com/edgexfoundry/go-mod-configuration/blob/master/v2
/LICENSE

github.com/edgexfoundry/go-mod-core-contracts/v2 Apache-2.0 https://github.com/edgexfoundry/go-mod-core-contracts/blob/master/v2
/LICENSE

github.com/edgexfoundry/go-mod-messaging/v2 Apache-2.0 https://github.com/edgexfoundry/go-mod-messaging/blob/master/v2/LICENSE

github.com/edgexfoundry/go-mod-registry/v2 Apache-2.0 https://github.com/edgexfoundry/go-mod-registry/blob/master/v2/LICENSE

github.com/edgexfoundry/go-mod-secrets/v2 Apache-2.0 https://github.com/edgexfoundry/go-mod-secrets/blob/master/v2/LICENSE

github.com/fatih/color MIT https://github.com/fatih/color/blob/master/LICENSE.md

github.com/fxamacker/cbor/v2 MIT https://github.com/fxamacker/cbor/blob/master/v2/LICENSE

github.com/go-kit/kit/log MIT https://github.com/go-kit/kit/blob/master/log/LICENSE

github.com/go-logfmt/logfmt MIT https://github.com/go-logfmt/logfmt/blob/master/LICENSE

github.com/gomodule/redigo Apache-2.0 https://github.com/gomodule/redigo/blob/master/LICENSE

github.com/google/uuid BSD-3-
Clause

https://github.com/google/uuid/blob/master/LICENSE

github.com/go-playground/locales MIT https://github.com/go-playground/locales/blob/master/LICENSE

github.com/go-playground/universal-translator MIT https://github.com/go-playground/universal-translator/blob/master/LICENSE

github.com/go-playground/validator/v10 MIT https://github.com/go-playground/validator/blob/master/v10/LICENSE

github.com/go-redis/redis/v7 BSD-2-
Clause

https://github.com/go-redis/redis/blob/master/v7/LICENSE

github.com/gorilla/mux BSD-3-
Clause

https://github.com/gorilla/mux/blob/master/LICENSE

github.com/gorilla/websocket BSD-2-
Clause

https://github.com/gorilla/websocket/blob/master/LICENSE

github.com/hashicorp/consul/api MPL-2.0 https://github.com/hashicorp/consul/blob/master/api/LICENSE

github.com/hashicorp/errwrap MPL-2.0 https://github.com/hashicorp/errwrap/blob/master/LICENSE

github.com/hashicorp/go-cleanhttp MPL-2.0 https://github.com/hashicorp/go-cleanhttp/blob/master/LICENSE

github.com/hashicorp/go-hclog MIT https://github.com/hashicorp/go-hclog/blob/master/LICENSE

github.com/hashicorp/go-immutable-radix MPL-2.0 https://github.com/hashicorp/go-immutable-radix/blob/master/LICENSE

github.com/hashicorp/golang-lru/simplelru MPL-2.0 https://github.com/hashicorp/golang-lru/blob/master/simplelru/LICENSE

github.com/hashicorp/go-multierror MPL-2.0 https://github.com/hashicorp/go-multierror/blob/master/LICENSE

github.com/hashicorp/go-rootcerts MPL-2.0 https://github.com/hashicorp/go-rootcerts/blob/master/LICENSE

github.com/hashicorp/serf/coordinate MPL-2.0 https://github.com/hashicorp/serf/blob/master/coordinate/LICENSE

github.com/leodido/go-urn MIT https://github.com/leodido/go-urn/blob/master/LICENSE

github.com/mattn/go-colorable MIT https://github.com/mattn/go-colorable/blob/master/LICENSE

github.com/mattn/go-isatty MIT https://github.com/mattn/go-isatty/blob/master/LICENSE

github.com/mitchellh/consulstructure MIT https://github.com/mitchellh/consulstructure/blob/master/LICENSE

github.com/mitchellh/copystructure MIT https://github.com/mitchellh/copystructure/blob/master/LICENSE

github.com/mitchellh/mapstructure MIT https://github.com/mitchellh/mapstructure/blob/master/LICENSE

github.com/mitchellh/reflectwalk MIT https://github.com/mitchellh/reflectwalk/blob/master/LICENSE

github.com/pebbe/zmq4 BSD-2-
Clause

https://github.com/pebbe/zmq4/blob/master/LICENSE.txt

https://github.com/edgexfoundry/app-functions-sdk-go/blob/master/v2/internal/etm/LICENSE
https://github.com/edgexfoundry/app-functions-sdk-go/blob/master/v2/internal/etm/LICENSE
https://github.com/edgexfoundry/go-mod-bootstrap/blob/master/v2/LICENSE
https://github.com/edgexfoundry/go-mod-configuration/blob/master/v2/LICENSE
https://github.com/edgexfoundry/go-mod-configuration/blob/master/v2/LICENSE
https://github.com/edgexfoundry/go-mod-core-contracts/blob/master/v2/LICENSE
https://github.com/edgexfoundry/go-mod-core-contracts/blob/master/v2/LICENSE
https://github.com/edgexfoundry/go-mod-messaging/blob/master/v2/LICENSE
https://github.com/edgexfoundry/go-mod-registry/blob/master/v2/LICENSE
https://github.com/edgexfoundry/go-mod-secrets/blob/master/v2/LICENSE
https://github.com/fatih/color/blob/master/LICENSE.md
https://github.com/fxamacker/cbor/blob/master/v2/LICENSE
https://github.com/go-kit/kit/blob/master/log/LICENSE
https://github.com/go-logfmt/logfmt/blob/master/LICENSE
https://github.com/gomodule/redigo/blob/master/LICENSE
https://github.com/google/uuid/blob/master/LICENSE
https://github.com/go-playground/locales/blob/master/LICENSE
https://github.com/go-playground/universal-translator/blob/master/LICENSE
https://github.com/go-playground/validator/blob/master/v10/LICENSE
https://github.com/go-redis/redis/blob/master/v7/LICENSE
https://github.com/gorilla/mux/blob/master/LICENSE
https://github.com/gorilla/websocket/blob/master/LICENSE
https://github.com/hashicorp/consul/blob/master/api/LICENSE
https://github.com/hashicorp/errwrap/blob/master/LICENSE
https://github.com/hashicorp/go-cleanhttp/blob/master/LICENSE
https://github.com/hashicorp/go-hclog/blob/master/LICENSE
https://github.com/hashicorp/go-immutable-radix/blob/master/LICENSE
https://github.com/hashicorp/golang-lru/blob/master/simplelru/LICENSE
https://github.com/hashicorp/go-multierror/blob/master/LICENSE
https://github.com/hashicorp/go-rootcerts/blob/master/LICENSE
https://github.com/hashicorp/serf/blob/master/coordinate/LICENSE
https://github.com/leodido/go-urn/blob/master/LICENSE
https://github.com/mattn/go-colorable/blob/master/LICENSE
https://github.com/mattn/go-isatty/blob/master/LICENSE
https://github.com/mitchellh/consulstructure/blob/master/LICENSE
https://github.com/mitchellh/copystructure/blob/master/LICENSE
https://github.com/mitchellh/mapstructure/blob/master/LICENSE
https://github.com/mitchellh/reflectwalk/blob/master/LICENSE
https://github.com/pebbe/zmq4/blob/master/LICENSE.txt

github.com/pelletier/go-toml Apache-2.0 https://github.com/pelletier/go-toml/blob/master/LICENSE

github.com/x448/float16 MIT https://github.com/x448/float16/blob/master/LICENSE

golang.org/x/crypto/sha3 BSD-3-
Clause

https://pkg.go.dev/golang.org/x/crypto/sha3?tab=licenses

golang.org/x/net BSD-3-
Clause

https://pkg.go.dev/golang.org/x/net?tab=licenses

golang.org/x/sys BSD-3-
Clause

https://pkg.go.dev/golang.org/x/sys?tab=licenses

golang.org/x/text BSD-3-
Clause

https://pkg.go.dev/golang.org/x/text?tab=licenses

LoRa Device Service

The LoRa device service is linked with the following packages when compiled:

Package License
Type

License URL

bitbucket.org/bertimus9/systemstat MIT https://bitbucket.org/bertimus9/systemstat/src/master/LICENSE

github.com/armon/go-metrics MIT https://github.com/armon/go-metrics/blob/master/LICENSE

github.com/cenkalti/backoff MIT https://github.com/cenkalti/backoff/blob/master/LICENSE

github.com/eclipse/paho.mqtt.golang BSD-3-Clause https://github.com/eclipse/paho.mqtt.golang/blob/master/LICENSE

github.com/edgexfoundry/device-sdk-go/v2 Apache-2.0 https://github.com/edgexfoundry/device-sdk-go/blob/master/v2/LICENSE

github.com/edgexfoundry/go-mod-bootstrap/v2 Apache-2.0 https://github.com/edgexfoundry/go-mod-bootstrap/blob/master/v2/LICENSE

github.com/edgexfoundry/go-mod-configuration/v2 Apache-2.0 https://github.com/edgexfoundry/go-mod-configuration/blob/master/v2/LICENSE

github.com/edgexfoundry/go-mod-core-contracts
/v2

Apache-2.0 https://github.com/edgexfoundry/go-mod-core-contracts/blob/master/v2
/LICENSE

github.com/edgexfoundry/go-mod-messaging/v2 Apache-2.0 https://github.com/edgexfoundry/go-mod-messaging/blob/master/v2/LICENSE

github.com/edgexfoundry/go-mod-registry/v2 Apache-2.0 https://github.com/edgexfoundry/go-mod-registry/blob/master/v2/LICENSE

github.com/edgexfoundry/go-mod-secrets/v2 Apache-2.0 https://github.com/edgexfoundry/go-mod-secrets/blob/master/v2/LICENSE

github.com/fatih/color MIT https://github.com/fatih/color/blob/master/LICENSE.md

github.com/fxamacker/cbor/v2 MIT https://github.com/fxamacker/cbor/blob/master/v2/LICENSE

github.com/go-kit/kit/log MIT https://github.com/go-kit/kit/blob/master/log/LICENSE

github.com/go-logfmt/logfmt MIT https://github.com/go-logfmt/logfmt/blob/master/LICENSE

github.com/google/uuid BSD-3-Clause https://github.com/google/uuid/blob/master/LICENSE

github.com/go-playground/locales MIT https://github.com/go-playground/locales/blob/master/LICENSE

github.com/go-playground/universal-translator MIT https://github.com/go-playground/universal-translator/blob/master/LICENSE

github.com/go-playground/validator/v10 MIT https://github.com/go-playground/validator/blob/master/v10/LICENSE

github.com/go-redis/redis/v7 BSD-2-Clause https://github.com/go-redis/redis/blob/master/v7/LICENSE

github.com/gorilla/mux BSD-3-Clause https://github.com/gorilla/mux/blob/master/LICENSE

github.com/gorilla/websocket BSD-2-Clause https://github.com/gorilla/websocket/blob/master/LICENSE

github.com/hashicorp/consul/api MPL-2.0 https://github.com/hashicorp/consul/blob/master/api/LICENSE

github.com/hashicorp/errwrap MPL-2.0 https://github.com/hashicorp/errwrap/blob/master/LICENSE

github.com/hashicorp/go-cleanhttp MPL-2.0 https://github.com/hashicorp/go-cleanhttp/blob/master/LICENSE

github.com/hashicorp/go-hclog MIT https://github.com/hashicorp/go-hclog/blob/master/LICENSE

github.com/hashicorp/go-immutable-radix MPL-2.0 https://github.com/hashicorp/go-immutable-radix/blob/master/LICENSE

https://github.com/pelletier/go-toml/blob/master/LICENSE
https://github.com/x448/float16/blob/master/LICENSE
https://pkg.go.dev/golang.org/x/crypto/sha3?tab=licenses
https://pkg.go.dev/golang.org/x/net?tab=licenses
https://pkg.go.dev/golang.org/x/sys?tab=licenses
https://pkg.go.dev/golang.org/x/text?tab=licenses
https://bitbucket.org/bertimus9/systemstat/src/master/LICENSE
https://github.com/armon/go-metrics/blob/master/LICENSE
https://github.com/cenkalti/backoff/blob/master/LICENSE
https://github.com/eclipse/paho.mqtt.golang/blob/master/LICENSE
https://github.com/edgexfoundry/device-sdk-go/blob/master/v2/LICENSE
https://github.com/edgexfoundry/go-mod-bootstrap/blob/master/v2/LICENSE
https://github.com/edgexfoundry/go-mod-configuration/blob/master/v2/LICENSE
https://github.com/edgexfoundry/go-mod-core-contracts/blob/master/v2/LICENSE
https://github.com/edgexfoundry/go-mod-core-contracts/blob/master/v2/LICENSE
https://github.com/edgexfoundry/go-mod-messaging/blob/master/v2/LICENSE
https://github.com/edgexfoundry/go-mod-registry/blob/master/v2/LICENSE
https://github.com/edgexfoundry/go-mod-secrets/blob/master/v2/LICENSE
https://github.com/fatih/color/blob/master/LICENSE.md
https://github.com/fxamacker/cbor/blob/master/v2/LICENSE
https://github.com/go-kit/kit/blob/master/log/LICENSE
https://github.com/go-logfmt/logfmt/blob/master/LICENSE
https://github.com/google/uuid/blob/master/LICENSE
https://github.com/go-playground/locales/blob/master/LICENSE
https://github.com/go-playground/universal-translator/blob/master/LICENSE
https://github.com/go-playground/validator/blob/master/v10/LICENSE
https://github.com/go-redis/redis/blob/master/v7/LICENSE
https://github.com/gorilla/mux/blob/master/LICENSE
https://github.com/gorilla/websocket/blob/master/LICENSE
https://github.com/hashicorp/consul/blob/master/api/LICENSE
https://github.com/hashicorp/errwrap/blob/master/LICENSE
https://github.com/hashicorp/go-cleanhttp/blob/master/LICENSE
https://github.com/hashicorp/go-hclog/blob/master/LICENSE
https://github.com/hashicorp/go-immutable-radix/blob/master/LICENSE

github.com/hashicorp/golang-lru/simplelru MPL-2.0 https://github.com/hashicorp/golang-lru/blob/master/simplelru/LICENSE

github.com/hashicorp/go-multierror MPL-2.0 https://github.com/hashicorp/go-multierror/blob/master/LICENSE

github.com/hashicorp/go-rootcerts MPL-2.0 https://github.com/hashicorp/go-rootcerts/blob/master/LICENSE

github.com/hashicorp/serf/coordinate MPL-2.0 https://github.com/hashicorp/serf/blob/master/coordinate/LICENSE

github.com/leodido/go-urn MIT https://github.com/leodido/go-urn/blob/master/LICENSE

github.com/mattn/go-colorable MIT https://github.com/mattn/go-colorable/blob/master/LICENSE

github.com/mattn/go-isatty MIT https://github.com/mattn/go-isatty/blob/master/LICENSE

github.com/mitchellh/consulstructure MIT https://github.com/mitchellh/consulstructure/blob/master/LICENSE

github.com/mitchellh/copystructure MIT https://github.com/mitchellh/copystructure/blob/master/LICENSE

github.com/mitchellh/mapstructure MIT https://github.com/mitchellh/mapstructure/blob/master/LICENSE

github.com/mitchellh/reflectwalk MIT https://github.com/mitchellh/reflectwalk/blob/master/LICENSE

github.com/OneOfOne/xxhash Apache-2.0 https://github.com/OneOfOne/xxhash/blob/master/LICENSE

github.com/pebbe/zmq4 BSD-2-Clause https://github.com/pebbe/zmq4/blob/master/LICENSE.txt

github.com/pelletier/go-toml Apache-2.0 https://github.com/pelletier/go-toml/blob/master/LICENSE

github.com/tarm/serial BSD-3-Clause https://github.com/tarm/serial/blob/master/LICENSE

github.com/x448/float16 MIT https://github.com/x448/float16/blob/master/LICENSE

golang.org/x/crypto/sha3 BSD-3-Clause https://pkg.go.dev/golang.org/x/crypto/sha3?tab=licenses

golang.org/x/net BSD-3-Clause https://pkg.go.dev/golang.org/x/net?tab=licenses

golang.org/x/sys BSD-3-Clause https://pkg.go.dev/golang.org/x/sys?tab=licenses

golang.org/x/text BSD-3-Clause https://pkg.go.dev/golang.org/x/text?tab=licenses

gopkg.in/yaml.v3 MIT https://github.com/go-yaml/yaml/blob/v3/LICENSE

References
EdgeX Foundry Documentation (release 2.1): https://docs.edgexfoundry.org/2.1/

Definitions, Acronyms and Abbreviations
CPS: Cyber-Physical System
MQTT: A publish-subscribe protocol designed for connecting remote devices, especially when there are bandwidth lightweight, network
constraints. (MQTT is not an acronym.)

https://github.com/hashicorp/golang-lru/blob/master/simplelru/LICENSE
https://github.com/hashicorp/go-multierror/blob/master/LICENSE
https://github.com/hashicorp/go-rootcerts/blob/master/LICENSE
https://github.com/hashicorp/serf/blob/master/coordinate/LICENSE
https://github.com/leodido/go-urn/blob/master/LICENSE
https://github.com/mattn/go-colorable/blob/master/LICENSE
https://github.com/mattn/go-isatty/blob/master/LICENSE
https://github.com/mitchellh/consulstructure/blob/master/LICENSE
https://github.com/mitchellh/copystructure/blob/master/LICENSE
https://github.com/mitchellh/mapstructure/blob/master/LICENSE
https://github.com/mitchellh/reflectwalk/blob/master/LICENSE
https://github.com/OneOfOne/xxhash/blob/master/LICENSE
https://github.com/pebbe/zmq4/blob/master/LICENSE.txt
https://github.com/pelletier/go-toml/blob/master/LICENSE
https://github.com/tarm/serial/blob/master/LICENSE
https://github.com/x448/float16/blob/master/LICENSE
https://pkg.go.dev/golang.org/x/crypto/sha3?tab=licenses
https://pkg.go.dev/golang.org/x/net?tab=licenses
https://pkg.go.dev/golang.org/x/sys?tab=licenses
https://pkg.go.dev/golang.org/x/text?tab=licenses
https://github.com/go-yaml/yaml/blob/v3/LICENSE
https://docs.edgexfoundry.org/2.1/
https://en.wikipedia.org/wiki/Cyber-physical_system

	Smart Data Transaction for CPS Installation Guide

