Release 6 Installation Document of IEC Type 3: Android
cloud native applications on Arm servers in edge

Introduction
How to use this document
Deployment Architecture
Pre-Installation Requirements

® Software Perequisites
Components Version
Database Perequisites
Installation High-Level Overview
Bare Metal Deployment Guide
Upstream Deployment Guide

Install Main Components

® Run Anbox On Ubuntul8.04
© Build Android image for anbox
© Required packages installation
© Run robox android system

® Cluster deployment and access by K8S
© 1 Basic Architecture
© 2 K8s Cluster construction
© 3 Check cluster running status

® Cloud platform monitoring & Analyze
© 1 Basic Architecture
© 2 Bootup basic components
© 3 Analyze data by web browser

Developer Guide and Troubleshooting
Uninstall Guide

Troubleshooting

Maintenance

Frequently Asked Questions

License

References

Definitions, acronyms and abbreviations

Introduction

IEC Type3 mainly focus on Android Application running on edge ARM Cloud architecture with GPU/ vGPU Management. Also, ARM cloud games need
to have the basic features of "cloud”, such as flexibility ,

availability everywhere. Based on cloud infrastructure optimized for android application, providing ARM application services.

How to use this document

This document describes the construction, compilation and use of robox Android container environment. Introduce environment configuration, code
download, build and compile, and how to use it.

This document is mainly suitable for users who build and compile robox container Android emulation.

Deployment Architecture

T e T T T B Tt T T T TR

H
: .
i work node1

O
. :

Prometheus

0

kubect! ; Grafana ¥
5 N —= :
: Master node\ ® y) * ® ;
i / PDd& docker Pod docker Ped docker :
E - |R0box Conta\nerl |Rnhox Container |R0b0! Cumainerl r] E
| =]| | e il Tl |
; ARM64 Ubuntu18.04 H

work node2

‘ scheduler | |Caontro|ler—manager| Prometheus

/

. Goeron

5

—>

©

Grafana E

: % —= ;
= A Sl e =
: POGX docker | |7 docker P9 gocker E

E ‘ Robox Container‘ | Robox Containerl |R0bux Container
! T T T il Tl

1L
ARMG64 Ubuntu18.04

O e B e e g e =3

Figurel Deployment Main Framework

Andorid Container

App2 Window

App3
App1 Window

burfaceflingel] ﬁl\lindowmanaged [Activitymanaged

[Netd] [Audiannger] [lnputd] anboxd

[Anbox Container ManagerJ

Docker Y

‘ashem| | NIC | | . | LinuxKernel

Figure2 Robox Framework

Pre-Installation Requirements

® Hardware Requirements

2*arm64 server:

Arch AARCHG64

Processor model = 1*Aarch64 processor(A72 inside)

RAM 16*DDR4-2933

Storage
Network

Power Supply

Scale 447 mm x 490 mm x 86.1 mm

ARM Server satisfies the Arm Server Ready certified.

Power 100~240V AC240V DC

» Software Perequisites

item
os

robox

robox Compile and run
dependent packages

docker

comments
ubuntu 18.04.3/6(key)

robox is an Android
container.

support for robox

compilation and
operation.

needed by K8S/Robox

« Components Version

10*2.5 inch SAS/SATA/SSD or 8*2.5 inch NVMe SSD

1 onboard network card, each card supports 4*GE port or 4*10GE port or 4*25GE port

method

git clone https://github.com/kunpengcompute/robox.git -b release-phase2.3

apt-get install build-essential cmake cmake-data debhelper dbus google-mock libboost-dev

libboost-filesystem-dev libboost-log-dev libboost-iostreams-dev

libboost-program-options-dev libboost-system-dev libboost-test-dev libboost-thread-dev libcap-

dev libdbus-1-dev libdbus-cpp-dev libegll-mesa-dev libgles2-mesa-dev

libglib2.0-dev libgim-dev libgtest-dev liblxcl libproperties-cpp-dev libprotobuf-dev libsdi2-dev

libsdI2-image-dev Ixc-dev pkg-config protobuf-compiler

apt-get install docker.io

Anbox Run Android applications on any GNU/Linux operating system.

Grafana

Compose and scale observability with one or all pieces of the stack

Prometheus = Cloud native system performance monitoring

K8s container orchestration engine for automating deployment, scaling, and management of containerized

applications

- Database Perequisites

schema scripts: N/A

8.4.3
2.34.0
k8s: v1.23.5;

kube-apiserver:vl.
21.11

kube-scheduler:v1.
21.11

kube-proxy:v1.21.11
etcd:3.4.13-0

coredns:v1.8.0

https://github.com/kunpengcompute/robox.git
http://docker.io/

® Other Installation Requirements

Jump Host RequirementsN/A

Network Requirements: The network connection is normal and can communicate with the external network.
Bare Metal Node Requirements N/A

Execution Requirements (Bare Metal Only) N/A

O O O O

Installation High-Level Overview

Bare Metal Deployment Guide

® |nstall Bare Metal Jump Host : N/A
® Creating a Node Inventory File: N/A
® Creating the Settings Files: N/A

® Running: N/A

Upstream Deployment Guide

Upstream Deployment Key Features N/A

Special Requirements for Upstream Deployments N/A
Scenarios and Deploy Settings for Upstream Deployments N/A
Including Upstream Patches with DeploymentN/A

Running N/A

Interacting with Containerized Overcloud N/A

Verifying the Setup as defined the Akraino validation feature project plus any additional testing specific to the blue print

Install Main Components

Since the components and images required by the project are relatively large, and the process of compilation takes time, we store the compiled
images on the github repository.

The link is: https://github.com/ysemi-computing/RoboxWidget.git
git clone https://github.com/ysemi-computing/RoboxWidget.git
After this step, The code structure is as follows:

RoboxWidget/
android.img
components
grafana-server
node_exporter
perf_exporter
prometheus

README.md

Run Anbox On Ubuntul8.04

Build Android image for anbox

https://github.com/ysemi-computing/RoboxWidget.git
https://github.com/ysemi-computing/RoboxWidget.git

Code cloning and compilation is very time-consuming. If you just want to deploy and experience the Android system by iec, you can skip this section,
because the project you just cloned already exists.

Firstly, you should install a ubuntu 18.04 system on Aarch64 processor, and swith to root user, then run the script “build_android_image.sh”

After about two hours, the Android image was compiled successfully, and the results are as follows:

Is out/target/product/arm64/

android-info.txt obj previous_build_config.mk recovery symbols system.img build_fingerprint.txt cache.img data gen module-
info.json ramdisk.img root system userdata.img

Required packages installation

Before running anbox, we need to install some necessary packages, you can execute the fol script “armé64_env_setup.sh”

After this, the image of anbox has been completed, which can be viewed through docker related commandsType the command below:

sudo docker images | grep robox

android robox e223a91c4b58 6 daysago 860MB

Run robox android system

After the above two scripts are executed, the robox operating environment is ready, and the entire directory structure of robox can be seen as follows

android

binaryFiles

cmake
cmake_uninstall.cmake.in
COPYING.GPL
cross-compile-chroot.sh
data

docs

external

kernel

patch

products

scripts

src

Stepl: You can copy the binaryFiles in the robox code to the some place, then run robox

start the first continer instance
Jrobox -v start 1

1is the id, used by session manager and docker container

https://github.com/ysemi-computing/RoboxWidget/blob/main/scripts/build_android_image.sh
https://github.com/ysemi-computing/RoboxWidget/blob/main/scripts/arm64_env_setup.sh

Step2: Check the docker instance process and session manager process.

sudo docker ps | grep instance

ps -aux | grep session

step3: Log in the container and confirm whether the robox instance started successfully.

container name format: instance + id

docker exec -it instancel sh

step4: get android property sys.boot_completed

getprop | grep sys.boot.completed

[sys.boot_completed]: [1] //1 which means start successfully

Cluster deployment and access by K8S

It is troublesome to start robox through commands to deploy in a real environment. Here, the well-known K8S system is used to complete the
deployment of robox instances. On this basis,

Robox can be much more effectively deployed, run, monitored, and analyzed for multiple host nodes. Here is k8s cluster setup and container orchestration.

1 Basic Architecture

kubectl

Master node

| []

API Server
//\\

scheduler

Coontroller-manager

Figure3 View Of Robox In Cluster

2 K8s Cluster construction

e

e v N

AJ
werk nodet
1 X T~ %
Pod * Pod * Pod
X docker docker docker
‘ Robox Cnntainer‘ |Robox Gonlainerl | Robaox Container‘
Kube-proxy work node1
1 X N —%
Pod Pod Pod
& docker docker docker
|R0b0x Containerl |Rnb0x Cnntainerl |R0b01 Conlalnerl

The k8s cluster construction can be completed through the warehouse code, you can do as follows

git clone https://gerrit.akraino.org/r/iec.git

cd iec/deploy/compass && bash deploylEC.sh

current configuration:

® Ubuntu Version18.04
® Docker: 20+
® k8s:1.21.3

Host Network:

® master: 192.168.10.66
* work: 192.168.10.62

3 Check cluster running status

kubectl apply -f https://addons.kuboard.cn/kuboard/kuboard-v3-swr.yaml

kubectl get cs

https://gerrit.akraino.org/r/iec.git
https://addons.kuboard.cn/kuboard/kuboard-v3-swr.yaml

Warning: vl ComponentStatus is deprecated in v1.19+
NAME STATUS MESSAGE
scheduler

Healthy ok

ERROR
controller-manager

Healthy ok
etcd-0

Healthy {'health":"true"}
kubectl get node

NAME STATUS ROLES

AGE VERSION
master Ready control-plane,master 22h v1.21.3
work Ready <none>

22h v1.21.5

then start kuboard with web browser

urlmaster-ip-address:30080

At the same time, we can present the status of the cluster through the k8s visual component. We use kuboard, it is very convenient to install and use
useradmin

passwordKuboard123

ik Home Page > default (svich 3 default [Swicnl > Pods List
| Pod anbox-655859518-96xmk
3 default
Reason Time
Import

Cluster Management

Count Message
Namespace

Pod anbox-6558595fb8-96xmk
default v

* Kubemetes

w235
* Kuboara 308 Q kuboard-adi
® Agent v3.1.2
No event is involved with the Pod
40 minutes
HostingNode
@ work (192.168.10.62)
A Ovenview © Scheduled 2022-23-38 19:19:36
=7 Kuboard 4t
[Frequent Actions

PodIP
<« Applications

© Initialized 2022-83-3@ 19:19:36
andron
‘Workloads

=48 Kuboard Bt

B Pod YAML [l Delet
Status
Running
© Containers Ready 2022-03-30 19:19:00
#ifS: android:robox
Logs@ Browse | Downioadlog | Tallog | bash | v

5555 TP &

ee®

Figure4 View of Robox On Kuboard

Cloud platform monitoring & Analyze

1 Basic Architecture

cAdvisol
[:]‘7 | l g\ Grafana
Collect containers . _ l D= Visual metrics
metrc TR | Query

& 5

/ Docker Engine

| Push
! Prometheus AlarmManager
Metrics send notificaions

DOCKER HOST
Slack

Collect OS and Scrape metrics
event metrics ‘

g
5

Container
Container

V]

[Nodo Bgortr | [Pertrtr | <

Figure5 Prometheus and Grafana Mix

2 Bootup basic components

Prometheus is only used for monitoring data. The real data needs an exporter. Different exporters export different data, These data are finally presented
by prometheus.

Only node exporter and perf exporter are used in this project, these two can be directly downloaded and installed with binary files. Prometheus is used for
data monitoring,

and then a better visual interface is grafana, the data it needs can just be obtained through Prometheus.

This project only needs to run the script below

https://github.com/ysemi-computing/RoboxWidget/blob/main/scripts/load_components.sh

After the script is executed, the required Prometheus and grafana are downloaded and run in the background

3 Analyze data by web browser

Let us explore data that Prometheus has collected about itself. To use Prometheus's built-in expression browser, navigate to http://localhost:9090/graph
and choose the "Table" view

within the "Graph" tab. Enter the below into the expression console and then click "Execute":

prometheus_target_interval_length_seconds

https://github.com/ysemi-computing/RoboxWidget/blob/main/scripts/load_components.sh

9 Prometheus

8 Use local time Enabl

ry history @ Enable autocomplete @ Enable highlighting @ Enable linter
Q pronetheus_target_interval_length_seconds [l Execute

Table Graph

=2-B0

—

ndsfinstance= "loc

ndsiinstances "o

Figure6 First Startup View Of Prometheus

In addition, we can log in to grafana through a web browser and see the effect as shown below

url: http://localhost:3000
user: admin

password: admin

Prometheus Time Series Co' X 73 Configuration: Plugins - ¢ X [EEGEZNNINE IR

€ c O DO o= localhost:3000/plugins

& Teams

Find more plugins on Grafana.com

Alert List l Azure Monitor BN 2 Bar Gauge

Figure7 First Startup View Of Grafana

Developer Guide and Troubleshooting

® Utilization of Images

N/A

® Post-deployment Configuration

N/A

® Debugging Failures
N/A

® Reporting a Bug
N/A

Uninstall Guide

N/A

Troubleshooting

When the server restarts, the binder_linux module needs to be loaded and installed as follows

sudo modprobe ashmem_linux
sudo rmmod binder_linux || true; sudo modprobe binder_linux num_devices=254

sudo chmod 777 /dev/ashmem /dev/binder*
If there is an external graphics card, you need to manually disable the built-in graphics card after each server restart. for example:

Ispci | grep -in VGA

6:0007:41:00.0 VGA compatible controller: Huawei Technologies Co., Ltd. Hi1710 [iBMC Intelligent Management system chip w
IVGA support] (rev 01)

echo 1 > /sys/bus/pci/devices/0007\:41\:00.0/remove

Maintenance

® Blue Print Package Maintenance
© Software maintenance N/A
© Hardware maintenanceN/A

® Blue Print Deployment Maintenance (N/A)

Frequently Asked Questions

N/A

License

N/A

References

N/A

Definitions, acronyms and abbreviations

N/A

When porting an Android app to Anbox Cloud (usually in the form of an APK), there are a few issues that might cause your app to not function properly:

	Release 6 Installation Document of IEC Type 3: Android cloud native applications on Arm servers in edge

