
IEC Blueprints Installation Overview
Contents

IEC Reference Foundation Overview
Networking and HW Prerequisites
Methods of Installation
Kubernetes Install for Ubuntu

Install Docker as Prerequisite
Turn off all swap devices and files with: Disable swap on your machine
Install Kubernetes with Kubeadm

Install the Calico CNI Plugin to Kubernetes Cluster
Install the Etcd Database
Install Calico to system
Remove the taints on master node

Verification for the Work of Kubernetes
Helm Install on Arm64

Alternative Methods of Installation
Script Based Installation
OPNFV Installers

OPNFV Fuel
Heat Orchestration Templates

IEC Reference Foundation Overview
This document provides a general description about the reference foundation of IEC. The Integrated Edge Cloud (IEC) will enable new functionalities and
business models on the network edge. The benefits of running applications on the network edge are - Better latencies for end users - Less load on network
since more data can be processed locally - Fully utilize the computation power of the edge devices

Currently, the chosen operating system(OS) is Ubuntu 16.04 and/or 18.04. The infrastructure orchestration of IEC is based on Kubernetes, which is a
production-grade container orchestration with rich running eco-system. The current container network interface(CNI) solution chosen for Kubernetes is
project Calico, which is a high performance, scalable, policy enabled and widely used container networking solution with rather easy installation and arm64
support. In the future, Contiv/VPP or OVN-Kubernetes would also be candidates for Kubernetes networking.

Networking and HW Prerequisites

For a virutal deploy, minimum hardware requirement is 1 baremetal server (either x86_64 or aarch64) for a deploy with 3 VMs on it.

For a baremetal deploy minimum hardware requirement is 3 baremetal servers.

Networking requirements - TBD

Methods of Installation

To address a large variety of setups, multiple methods of deployment should be supported. Deployment works both on x86_64 and aarch64 hw.

Method Pros (current state) Cons (current state) Prerequisites

Manual
installation Full control over each step

Easy to understand and replicate
Already available (see next chapter on this page)

Requires user
intervention
Requires certain
prerequisites be met
on cluster nodes
apriori

preinstalled operating
system (Ubuntu 16.04/18.
04) on all involved nodes

Script-based
installation High degree of flexibility via arguments

Portable
Can be used in CI/CD, assuming baremetal nodes are pre-provisioned, e.g. for
shorter test cycles like a patch verify job where we'd want to avoid reinstalling
the operating system each time

Implementation
currently in progress
Fixed number of
nodes (1 master + 1
worker)
Requires certain
prerequisites be met
on cluster nodes
apriori

preinstalled operating
system (Ubuntu 16.04/18.
04) on all involved nodes
user with passwordless
sudo access already
available on the target
nodes

OPNFV-
based installer
(s)

Unified and standardized input configuration files ()PDF/IDF
Can be used in CI/CD
Can handle OS provisioning on its own, for virtual, baremetal or hybrid PODs

Not yet implemented
Requires hardware
descriptor files (PDF
/IDF)

Jumpserver (installer) node
preinstalled
XDF (PDF/IDF) available
for the target lab

Heat stack
Portable Not tested on aarch64

yet
Uses VMs rather than
baremetal

Openstack cloud
preinstalled

Other installer
solutions (e.g.
Airship)

Alignment with industry standard installer solutions for K8s Not implemented
More complex design
and configuration
Might be overkill for
IEC, at least with the
current requirements

TBD

Kubernetes Install for Ubuntu

Install Docker as Prerequisite

Please follow docker installation guide for Ubuntu arm64 to install Docker CE:

https://docs.docker.com/install/linux/docker-ce/ubuntu/

Please select the 18.06 version since it is the latest version kubelet supported.

 $DOCKER_VERSION=18.06.1
 $ARCH=arm64
 $curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
 $sudo apt-key fingerprint 0EBFCD88
 $sudo add-apt-repository \
 "deb [arch=${ARCH}] https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) \
 stable"

 $sudo apt-get update
 $sudo apt-get install -y docker-ce=${DOCKER_VERSION}~ce~3-0~ubuntu

Turn off all swap devices and files with: Disable swap on your machine

 $ sudo swapoff -a

Install Kubernetes with Kubeadm

kubeadm helps you bootstrap a minimum viable Kubernetes cluster that conforms to best practices which is a preferred installation method for IEC
currently. Now we choose v1.13.0 as a current stable version of Kubernetes for arm64. Usually the current host(edge server/gateway)'s management
interface is chosen as the Kubeapi-server advertise address which is indicated here as .$MGMT_IP

The common installation steps for both Kubernetes master and slave node are given as Linux shell scripts:

https://opnfv-fuel.readthedocs.io/en/latest/release/installation/installation.instruction.html#opnfv-software-configuration-xdf
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/

 $ sudo bash
 $ apt-get update && apt-get install -y apt-transport-https curl
 $ curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -
 $ cat <<EOF >/etc/apt/sources.list.d/kubernetes.list
 $ deb https://apt.kubernetes.io/ kubernetes-xenial main
 $ EOF
 $ apt-get update
 $ apt-get install -y kubelet=1.13.0-00 kubeadm=1.13.0-00 kubectl=1.13.0-00
 $ apt-mark hold kubelet kubeadm kubectl
 $ sysctl net.bridge.bridge-nf-call-iptables=1

For host setup as Kubernetes master:

 $ sudo kubeadm config images pull
 $ MGMT_IP=<ip-address>
 $ sudo kubeadm init --pod-network-cidr=192.168.0.0/16 --apiserver-advertise-address=$MGMT_IP \
 --service-cidr=172.16.1.0/24

To start using your cluster, you need to run (as a regular user):

 $ mkdir -p $HOME/.kube
 $ sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
 $ sudo chown $(id -u):$(id -g) $HOME/.kube/config

or

 $ export KUBECONFIG=/etc/kubernetes/admin.conf

if you are the ``root`` user.

For hosts setup as Kubernetes slave:

 $ kubeadm join --token <token> <master-ip>:6443 --discovery-token-ca-cert-hash sha256:<hash>

which will skip ca-cert verification.
After the `slave` joining the Kubernetes cluster, in the master node, you could check the cluster
node with the command:

 $ kubectl get nodes

Install the Calico CNI Plugin to Kubernetes Cluster

Now we install a network add-on so that Kubernetes pods can communicate with each other. The network must be deployed before any Calico
applications. Kubeadm only supports Container Networking Interface(CNI) based networks for which Calico has supported.

Attention

--pod-network-cidr is the subnet of the pod network and must not overlap with any of the host networks
 (see for more details)https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#pod-network

--apiserver-advertise-address is the IP on the master node to use for advertising the master’s IP
 (see for https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#initializing-your-master
more details)

--service-cidr can be set up to be used for service VIPs and must not overlap with any of the host
networks.
 The default value is "10.96.0.0/12". If you change the default, make sure you update the clusterIP
address
 in the yaml file when installing etcd (in the steps below)

https://www.projectcalico.org/
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#pod-network
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#initializing-your-master

Install the Etcd Database

Please use the following command to install etcd database.

 $ wget https://raw.githubusercontent.com/iecedge/iec/master/src/foundation/scripts/cni/calico/etcd.yaml
 $ sed -i "s/10.96.232.136/${CLUSTER_IP}/" ./etcd.yaml
 $ kubectl apply -f etcd.yaml

Install the RBAC Roles required for Calico

 $ kubectl apply -f https://docs.projectcalico.org/v3.3/getting-started/kubernetes/installation/rbac.yaml

Install Calico to system

Firstly, we should get the configuration file from web site and modify the corresponding image from amd64 to arm64 version. Then, by using kubectl, the
calico pod will be created.

 $ wget https://raw.githubusercontent.com/iecedge/iec/master/src/foundation/scripts/cni/calico/calico.yaml

Since the " " image repo does not support does not multi-arch, we have to replace the “ ” image path to "calico" which supports quay.io/calico quay.io/calico
multi-arch.

 $ sed -i "s@10.96.232.136@${CLUSTER_IP}@; s@192.168.0.0/16@${POD_NETWORK_CIDR}@" ./calico.yaml

Deploy the Calico using following command:

 $ kubectl apply -f calico.yaml

Remove the taints on master node

 $ kubectl taint nodes --all node-role.kubernetes.io/master-

Verification for the Work of Kubernetes
Now we can verify the work of Kubernetes and Calico with Kubernets pod and service creation and accessing based on Nginx which is a widely used web
server.

Firstly, create a file named nginx-app.yaml to describe a Pod and service by:

Attention

 In calico.yaml file, there is an option "IP_AUTODETECTION_METHOD" about choosing
 network interface. The default value is "first-found" which means the first valid
 IP address (except local interface, docker bridge). So if the number of network-interface
 is more than 1 on your server, you should configure it depends on your networking
 environments. If it does not configure it properly, there are some error about
 calico-node pod: "BGP not established with X.X.X.X".

http://quay.io/calico
http://quay.io/calico

$ cat <<EOF >~/nginx-app.yaml
apiVersion: v1
kind: Service
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 type: NodePort
 ports:
 - port: 80
 protocol: TCP
 name: http
 selector:
 app: nginx

apiVersion: v1
kind: ReplicationController
metadata:
 name: nginx
spec:
 replicas: 2
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 #image: arm64v8/nginx:stable
 image: nginx
 ports:
 - containerPort: 80
EOF

then test the Kubernetes working status with the script:

Bash

 set -ex

 kubectl create -f ~/nginx-app.yaml
 kubectl get nodes
 kubectl get services
 kubectl get pods
 kubectl get rc

 r="0"
 while [$r -ne "2"]
 do
 r=$(kubectl get pods | grep Running | wc -l)
 sleep 60
 done

 svcip=$(kubectl get services nginx -o json | grep clusterIP | cut -f4 -d'"')
 sleep 10
 wget http://$svcip
 #kubectl delete -f ./examples/nginx-app.yaml
 kubectl delete -f ./nginx-app.yaml
 kubectl get rc
 kubectl get pods
 kubectl get services

Helm Install on Arm64
Helm is a tool for managing Kubernetes charts. Charts are packages of pre-configured Kubernetes resources. The installation of Helm on arm64 is as
follows:

 $ wget https://storage.googleapis.com/kubernetes-helm/helm-v2.12.3-linux-arm64.tar.gz
 $ tar -xvf helm-v2.12.3-linux-arm64.tar.gz
 $ sudo cp linux-arm64/helm /usr/bin
 $ sudo cp linux-arm64/tiller /usr/bin

Further Information
We would like to provide a walk through shell script (described in the following chapter) to automate the installation of Kubernetes and Calico in the future.
But this README is still useful for IEC developers and users.

For issues or anything on the reference foundation stack of IEC, you could contact:

Trevor Tao: trevor.tao@arm.com

Jingzhao Ni: jingzhao.ni@arm.com

Jianlin Lv: jianlin.lv@arm.com

Alternative Methods of Installation

Script Based Installation

Akraino IEC repository now provides an automated method, based on sh scripts, that handles all above steps.

Prerequisites:

2 nodes (virtual machines or baremetal) with a preinstalled operating system (Ubuntu 16.04/18.04) and passwordless-sudo capable user on them
(password-based login via SSH enabled);

The following snippet will automatically handle all steps described above in the previous chapter:

 $ git clone https://gerrit.akraino.org/r/iec
 # iec/scripts/startup.sh [master ip] [worker ip] [user] [password]
 $ iec/scripts/startup.sh 10.169.40.171 10.169.41.172 iec 123456

OPNFV Installers

OPNFV Fuel

OPNFV Fuel installer can be leveraged to automate the IEC prerequisites setup (e.g. baremetal operating system provisioning for baremetal clusters), as
well as the IEC installation itself.

Prerequisites:

1 jumpserver node with preinstalled operating system (Ubuntu 16.04/18.04 or CentOS7) - will also be used as a hypvervisor for the IEC VMs - for
single hypervisor deployments;
1 jumpserver node with preinstalled operating system + 3 baremetal nodes for multiple hypervisor deployments;

Supported configurations include, but are not limited to:

single hypervisor node running 3 VMs dedicated to IEC;
3 baremetal nodes dedicated IEC (K8 directly on baremetal);
3 baremetal nodes running a virtual control plane (each baremetal node has 1 VM dedicated to IEC);

Upstream Fuel patch is currently undergoing final stages of review and is expected to be merged soon.

Once the Fuel patch lands upstream, deploying IEC (including handling its prerequisites, like creating the required VMs on the hypervisor) can be done
using (e.g. for an AArch64 single-hypervisor POD):

https://gerrit.opnfv.org/gerrit/#/c/67011/

 $ git clone -b stable/hunter https://github.com/opnfv/fuel
 $ fuel/ci/deploy.sh -l arm -p virtual2 -s k8-nosdn-iec-noha -S /var/lib/opnfv/tmpdir/ -D |& tee deploy.log

Heat Orchestration Templates

Prerequisites:

Openstack Ocata or latest

Recommended configuration:

2 or more compute nodes with enough RAM and disk (128 GB of RAM, 2 TB disk space)
DPDK is optional but it is recommended

The scripts and templates can be found in the Akraino iec git repository:

IEC HOT

$ git clone https://gerrit.akraino.org/r/iec
$ cd iec/src/foundation/hot
$ # [has_dpdk=true] [skip_k8s_net=1] [skip_k8s_master=1] [skip_k8s_slaves=1] external_net=<external_net> .
/control.sh <start|stop>
$ has_dpdk=true external_net=external ./control.sh start

More useful information can be found in the README in the same directory

	IEC Blueprints Installation Overview

