Cl Best Practices

Code Review

All patches that go into a project repo need to be code reviewed by someone other than the original author. Code review is a great way to both learn from
others as well as improve code quality. Contribution to code review is highly recommended regardless of activity as a committer.

Below provides a simple checklist of common items that code reviewers should look out for (Patch submitters can use this to self-review as well to ensure
that they are not hitting any of these):

General
® Does the Git commit message sufficiently describes the change? (Refer to: https://chris.beams.io/posts/git-commit/)
® Does the commit message have an ‘Issue: <someissue>' in the footer and not in the subject line or body?
® Are there any typos?
® Are all code review comments addressed?
® |s the code rebased onto the latest HEAD of the branch?
® Does the code pull in any dependencies that might have license conflicts with this project's license?
Code
® Are imports alphabetical and sectioned off by stdlib, 3rdparty, and local?
® Are functions / methods organized alphabetically? (or categorized alphabetically)
® Does the change need unit tests? (Yes, it probably does!)
® Does the change need documentation?
® Does every function added have function docs? (javadoc, pydoc, whatever the language code docs is)
® Does it pass linting?
® Does the code cause backwards compatibility breakage? (If so it needs documentation)
Note

Refer to Google’s blog (google-blog-code-health) on effective code review.

Generic Linting (Coala)
Coala is a great tool for linting all languages. The easiest way to run Coala is with python-tox and requires Python 3 installed on the system:
tox -ecoal a

Running Coala without Tox can come in handy for executing Coala in interactive mode. In this case, install Coala in a Python viritualenv. Use
virtualenvwrapper as it makes it simple to manage local virtual environments.

Requirements
® Python 3

® Python virtualenv
® Python virtualenvwrapper

Install Coala
Note
Some distros have a package called coala available but do not confuse this package with python-coala which is an entirely different piece of software.

Using virtualenv (assuming virtualenvwrapper is available), install Coala:
nmkvi rtual env --pyt hon=/usr/bin/python3 coal a

pip install coala coal a-bears
coala --help

For future usage of an existing virtualenv, activate as follows:
Re-activate Coal a virtual env

wor kon coal a

Run the coal a command

coala --help

Set up Coala for a Project

Use python-tox to manage a Coala setup for any projects that require linting.

Requirements

https://lf-releng-docs.readthedocs.io/en/latest/best-practices.html#code-review
https://chris.beams.io/posts/git-commit/
https://testing.googleblog.com/2017/06/code-health-too-many-comments-on-your.html
https://virtualenv.pypa.io/en/stable/
https://virtualenvwrapper.readthedocs.io/en/latest/index.html

® Python 3
® Python virtualenv
® Python Tox

Configure the project with a tox.ini and a .coafile file. Below are examples of .coafile and tox.ini as defined by Iftools. Inside the tox.ini file the interesting
bits are under [testenv:coala].

.coafile

[all]

ignore = .tox/**,
Lgit/**,
.gitignore,
.gitreview,
. gi t nodul es,
node_nodul es/ **

[all.Gt]
bears = Gt Conmi t Bear
ignore_l ength_regex = Signed-of f - by,
Al so- by,

Co- aut hor ed- by,

http://,

https://

[al | . Docunentati on]
bears = Wi teGoodLi nt Bear
files = docs/**/*.rst

[al | . Mar kDown]

bears = MarkdownBear, SpaceConsi st encyBear, Wit eGoodLi nt Bear
files = ** . nd, **.markdown

use_spaces = true

[all.Python]
bears = Bandit Bear,
PEP8Bear ,
Py Comrent edCodeBear ,
PyDocSt yl eBear,
PyFl akesBear ,
Pyl nport Sort Bear
files = *.py

tox.ini

https://virtualenv.pypa.io/en/stable/
https://tox.readthedocs.io/

[tox]

mnversion = 1.6
envlist =
check- best - practi ces,
check- hooks

coal a,

docs,

docs- i nkcheck

ski psdi st =true

[testenv: check-best-practices]
comands = python {toxinidir}/check-best-practices.py

[testenv: check- hooks]

deps = pre-conmmt

commands =
pre-commit instal
pre-commit run --all-files

[testenv: coal a]

basepyt hon = python3
deps =

coal a

coal a- bears

nodeenv

commands =

nodeenv -p

npminstall --global remark-cli remark-lint wite-good
python3 -m nltk. downl oader punkt nmaxent_treebank_pos_t agger averaged_perceptron_tagger
coala --non-interactive

[testenv: docs]

deps = -rrequirenents.txt

commands =

sphinx-build -j auto -W-b html -n -W-d {envtnpdir}/doctrees ./docs/ {toxinidir}/docs/_build/ htni

[testenv: docs-1inkcheck]
deps = -rrequirenents.txt
comands = sphinx-build -j auto -W-b linkcheck -d {envtnpdir}/doctrees ./docs/ {toxinidir}/docs/_build/linkcheck

Jenkins Job Builder

Jenkins Job Builder Best Practices

https://docs.releng.linuxfoundation.org/projects/global-jjb/en/latest/best-practices.html#global-jjb-best-practices

	CI Best Practices

