
CI Best Practices

Code Review ¶

All patches that go into a project repo need to be code reviewed by someone other than the original author. Code review is a great way to both learn from
others as well as improve code quality. Contribution to code review is highly recommended regardless of activity as a committer.

Below provides a simple checklist of common items that code reviewers should look out for (Patch submitters can use this to self-review as well to ensure
that they are not hitting any of these):

General

Does the Git commit message sufficiently describes the change? (Refer to:)https://chris.beams.io/posts/git-commit/
Does the commit message have an ‘Issue: <someissue>’ in the footer and not in the subject line or body?
Are there any typos?
Are all code review comments addressed?
Is the code rebased onto the latest HEAD of the branch?
Does the code pull in any dependencies that might have license conflicts with this project’s license?

Code

Are imports alphabetical and sectioned off by stdlib, 3rdparty, and local?
Are functions / methods organized alphabetically? (or categorized alphabetically)
Does the change need unit tests? (Yes, it probably does!)
Does the change need documentation?
Does every function added have function docs? (javadoc, pydoc, whatever the language code docs is)
Does it pass linting?
Does the code cause backwards compatibility breakage? (If so it needs documentation)

Note

Refer to Google’s blog () on effective code review.google-blog-code-health

Generic Linting (Coala)

Coala is a great tool for linting all languages. The easiest way to run Coala is with python-tox and requires Python 3 installed on the system:

tox -ecoala

Running Coala without Tox can come in handy for executing Coala in interactive mode. In this case, install Coala in a Python viritualenv. Use
virtualenvwrapper as it makes it simple to manage local virtual environments.

Requirements

Python 3
Python virtualenv
Python virtualenvwrapper

Install Coala

Note

Some distros have a package called available but do not confuse this package with python-coala which is an entirely different piece of software.coala

Using virtualenv (assuming virtualenvwrapper is available), install Coala:

mkvirtualenv --python /usr/bin/python3 coala=
pip install coala coala-bears
coala --help

For future usage of an existing virtualenv, activate as follows:

Re-activate Coala virtualenv
workon coala
Run the coala command
coala --help

Set up Coala for a Project

Use python-tox to manage a Coala setup for any projects that require linting.

Requirements

https://lf-releng-docs.readthedocs.io/en/latest/best-practices.html#code-review
https://chris.beams.io/posts/git-commit/
https://testing.googleblog.com/2017/06/code-health-too-many-comments-on-your.html
https://virtualenv.pypa.io/en/stable/
https://virtualenvwrapper.readthedocs.io/en/latest/index.html

Python 3
Python virtualenv
Python Tox

Configure the project with a tox.ini and a .coafile file. Below are examples of .coafile and tox.ini as defined by lftools. Inside the tox.ini file the interesting
bits are under [testenv:coala].

.coafile

[all]
 ignore = .tox/**,

 .git/**,
 .gitignore,
 .gitreview,
 .gitmodules,
 node_modules/**

[all.Git]
 bears = GitCommitBear

 ignore_length_regex = Signed-off-by,
 Also-by,
 Co-authored-by,
 http://,
 https://

[all.Documentation]
 bears = WriteGoodLintBear
 files = docs/**/*.rst

[all.MarkDown]
 bears = MarkdownBear,SpaceConsistencyBear,WriteGoodLintBear
 files = **.md, **.markdown

 use_spaces = true

[all.Python]
 bears = BanditBear,

 PEP8Bear,
 PyCommentedCodeBear,
 PyDocStyleBear,
 PyFlakesBear,
 PyImportSortBear

 files = *.py

tox.ini

https://virtualenv.pypa.io/en/stable/
https://tox.readthedocs.io/

[tox]
 minversion = 1.6

 envlist =
 check-best-practices,
 check-hooks,
 coala,
 docs,
 docs-linkcheck
skipsdist=true

[testenv:check-best-practices]
 commands = python {toxinidir}/check-best-practices.py

[testenv:check-hooks]
 deps = pre-commit

 commands =
 pre-commit install
 pre-commit run --all-files

[testenv:coala]
 basepython = python3

 deps =
 coala
 coala-bears
 nodeenv

 commands =
 nodeenv -p
 npm install --global remark-cli remark-lint write-good
 python3 -m nltk.downloader punkt maxent_treebank_pos_tagger averaged_perceptron_tagger
 coala --non-interactive

[testenv:docs]
 deps = -rrequirements.txt

 commands =
 sphinx-build -j auto -W -b html -n -W -d {envtmpdir}/doctrees ./docs/ {toxinidir}/docs/_build/html

[testenv:docs-linkcheck]
 deps = -rrequirements.txt

 commands = sphinx-build -j auto -W -b linkcheck -d {envtmpdir}/doctrees ./docs/ {toxinidir}/docs/_build/linkcheck

Jenkins Job Builder

Jenkins Job Builder Best Practices

https://docs.releng.linuxfoundation.org/projects/global-jjb/en/latest/best-practices.html#global-jjb-best-practices

	CI Best Practices

