Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Table of Contents
maxLevel2

Introduction

This guide provides instructions for installing and configuring the Smart Data Transaction for CPS blueprint, and also includes recommended hardware and software requirements for the blueprint. The guide describes a minimal installation of the blueprint consisting of a single "master" node and two "edge" nodes, with directions on how the number of nodes can be modified as needed.

...

This document assumes the reader is familiar with basic UNIX command line utilities and Kubernetes. Familiarity with Ansible and Docker may also be useful. To interact with the EdgeX micro-services in a running setup, use the APIs as described in the EdgeX documentation. Sensor data can be observed through the MQTT broker mosquitto and its command line utility mosquitto_sub.

Start by reviewing the deployment architecture and requirements in the following sections, then follow the steps in the Installation section to set up the software and start it running. Confirm the services are functioning as expected by following the instructions in the Verifying the Setup section. The later sections in this document describe other tasks that can be performed on a running setup, alternate configuration options, and how to shut down and uninstall the software.

...

all:
hosts:
children:
master:
hosts:
localhost:
edge_nodes:
hosts:
edge1: # Name of first edge node
ip: 192.168.2.21 # IP address of first edge node
lora_id: 1
edge2: # Name of second edge node
ip: 192.168.2.25 # IP address of second edge node
lora_id: 4

In addition, if the master node is not the same as the deploy node, remove the line connection: local wherever it follows hosts: master in the playbooks in deploy/playbook.

In the file master.yml in the deploy/playbook/group_vars/all directory, set the master_ip value to the IP address of the master node. Note that this is required even if the master node is the same as the deploy node.

...

  • Make sure there are entries for the master and edge node names in /etc/hosts
  • Install required software packages including Docker, Kubernetes, pip, and mosquitto
  • Install Python packages used by other playbooks (kubernetes and cryptography)
  • Make sure the user can run docker Docker commands
  • Prepare basic configuration for Docker and Kubernetes
  • Set up a user name and password for the MQTT service

...

Kubernetes' initialization tool kubeadm requires 

Creating the Docker Registry

This blueprint sets up a private Docker registry on the master node to hold all the images which will be downloaded to the edge nodes. The following command with start the registry. This command also creates and installs a cryptographic key that is used to identify the registry to the edge nodes.

ansible-playbook -i ./hosts start_registry.yml --ask-become-pass

Once this command has been run the registry will run as a service and will automatically restart if the master node reboots for some reason. If you need to stop the registry or clear its contents, see the instructions in the Stopping and Clearing the Docker Registry section of the Uninstall Guide.

Note that if you stop and restart the registry new keys will be generated and you will need to run the edge_install.yml playbook again to copy them to the edge nodes.

Populating the Registry

The following command will download the required images from their public repositories and store copies in the private repository:

Preparing Edge Nodes

Add an administrative account to all the edge nodes. This account will be used by the deploy node when it needs to run commands directly on the edge nodes (e.g. for installing base software, or for joining or leaving the cluster). The following commands run on each edge node will add a user account named "edge" and add it to the group of users with sudo privileges.

sudo adduser edge
sudo usermod -aG sudo edge

Note, if you use an administrative account with a different name, change the variable ansible_user in the edge_nodes group in the deploy/playbook/hosts file to match the user name you are using.

The deploy node needs to log in via SSH to the edge nodes using a cryptographic key (rather than a password), so that a password does not need to be provided for every command. Run the following command on the deploy node to create a key called "edge" for the administrative user.

ssh-keygen -t ed25519 -f ~/.ssh/edge

The parameter ~/.ssh/edge is the name and location of the private key file that will be generated. If you use a different name or location, change the ansible_ssh_private_key_file variable for the edge_nodes group in deploy/playbook/hosts to match.

Once the key files have been created, the following command can be run from the deploy node to copy the key to each edge node so a password will not be required for each login. (The administrative user's password will be requested when running this command.)

ssh-copy-id -i ~/.ssh/edge.pub edge@nodename

Starting the Cluster

Adding Edge Nodes to the Cluster

Starting EdgeX

Sensor Nodes

Verifying the Setup

as defined the Akraino validation feature project plus any additional testing specific to the blue print

Developer Guide and Troubleshooting

Changing Configuration

Enabling and Disabling Optional Services

Debugging Failures

Reporting a Bug

Uninstall Guide

Stopping EdgeX

Removing Edge Nodes

Stopping Kubernetes

Stopping and Clearing the Docker Registry

Uninstalling Software Components

Removing Configuration and Temporary Data

Troubleshooting

Confirming Node and Service Status

Accessing Logs

Maintenance

Accessing EdgeX Service Configuration

Stopping and Restarting EdgeX Services

Stopping and Restarting the Kubernetes Cluster

Adding and Removing Edge Nodes

Updating the Software

Rebuilding Custom Services

requires that swap be disabled on nodes in the cluster. Turn off swap on the master mode by editing the /etc/fstab file (using sudo) and commenting out the line with "swap" as the third parameter:

# /swap.img none swap sw 0 0

In addition, if you have proxy settings kubeadm will warn that you should disable the proxy for cluster IP addresses. The default cluster IP ranges 10.96.0.0/12 and 10.244.0.0/16 should be added to the no_proxy and NO_PROXY variables in /etc/environment if necessary.

no_proxy=localhost,127.0.0.0/8,192.168.2.0/24,10.96.0.0/12,10.244.0.0/16,*.local,*.fujitsu.com
NO_PROXY=localhost,127.0.0.0/8,192.168.2.0/24,10.96.0.0/12,10.244.0.0/16,*.local,*.fujitsu.com

Creating the Docker Registry

This blueprint sets up a private Docker registry on the master node to hold all the images which will be downloaded to the edge nodes. The following command with start the registry. This command also creates and installs a cryptographic key that is used to identify the registry to the edge nodes.

ansible-playbook -i ./hosts start_registry.yml --ask-become-pass

Once this command has been run the registry will run as a service and will automatically restart if the master node reboots for some reason. If you need to stop the registry or clear its contents, see the instructions in the Stopping and Clearing the Docker Registry section of the Uninstall Guide.

Note that if you stop and restart the registry new keys will be generated and you will need to run the edge_install.yml playbook again to copy them to the edge nodes.

Populating the Registry

The following command will download the required images from their public repositories and store copies in the private repository:

ansible-playbook -i ./hosts pull_upstream_images.yml

Note that this process can take some time depending on the speed of the internet connection from the master node.

If the version of Kubernetes or Flannel changes you will need to populate the registry with updated images using the above command again. Note that you can force Kubernetes to use a specific patch version by editing the deploy/playbook/k8s/config.yml file and adding the line kubernetesVersion: v1.22.7 (with the version you require) under the the kind: ClusterConfiguration line, and running the master_install.yml playbook again. (You can also make the same change to ~/.lfedge/config.yml directly to avoid having to run master_install.yml again.)

Populating the registry will leave extra copies of the downloaded images on the master node. You can remove these using the following command (the images will remain in the private registry):

ansible-playbook -i ./hosts clean_local_images.yml

Preparing Edge Nodes

Add an administrative account to all the edge nodes. This account will be used by the deploy node when it needs to run commands directly on the edge nodes (e.g. for installing base software, or for joining or leaving the cluster). The following commands run on each edge node will add a user account named "edge" and add it to the group of users with sudo privileges.

sudo adduser edge
sudo usermod -aG sudo edge

Note, if you use an administrative account with a different name, change the variable ansible_user in the edge_nodes group in the deploy/playbook/hosts file to match the user name you are using.

The deploy node needs to log in via SSH to the edge nodes using a cryptographic key (rather than a password), so that a password does not need to be provided for every command. Run the following command on the deploy node to create a key called "edge" for the administrative user.

ssh-keygen -t ed25519 -f ~/.ssh/edge

The parameter ~/.ssh/edge is the name and location of the private key file that will be generated. If you use a different name or location, change the ansible_ssh_private_key_file variable for the edge_nodes group in deploy/playbook/hosts to match.

Once the key files have been created, the following command can be run from the deploy node to copy the key to each edge node so a password will not be required for each login. (The administrative user's password will be requested when running this command.)

ssh-copy-id -i ~/.ssh/edge.pub edge@nodename

After the administrative account has been created, the following command will perform initial setup on all edge nodes configured in the deploy/playbook/hosts file:

ansible-playbook -i ./hosts edge_install.yml

The playbook will perform the following initialization tasks:

  • Make sure there is an entry for the master node in /etc/hosts
  • Install required software packages including Docker and kubelet
  • Make sure the user can run Docker commands
  • Configure Docker, including adding the certificates to secure access to the private registry

Edge Node Kubernetes Requirements

Like the master node, swap should be disabled and the cluster IP address ranges should be excluded from proxy processing if necessary.

Note that on the Jetson Nano hardware platform has a service called nvzramconfig that acts as swap and needs to be disabled. Use the following command to disable it:

sudo systemctl disable nvzramconfig.service

Building the Custom Services

At this time, images for the two custom services, sync-app and device-lora, need to be built from source and pushed to the private Docker registry. (In the future these images should be available on Docker Hub or another public registry.) Use the following playbooks from the cicd/playbook directory on the deploy node to do so.

This command will install components that support cross-compiling the microservices for ARM devices:

ansible-playbook -i ./hosts setup_build.yml

This command will build local docker images of the custom microservices:

ansible-playbook -i ./hosts build_images.yml

The build command can take some time, depending on connection speed and the load on the deploy host, especially the compilation of cross-compiled images.

This command will push the images to the private registry:

ansible-playbook -i ./hosts push_images.yml

At time of writing this step will also create some workaround images required to enable EdgeX security features in this blueprint's Kubernetes configuration. Hopefully, these images will no longer be needed once fixes have been made upstream.

Starting the Cluster

With the base software installed and configured on the master and edge nodes, the following command will start the cluster:

ansible-playbook -i ./hosts init_cluster.yml --ask-become-pass

This command only starts the master node in the Kubernetes cluster. The state of the master node can be confirmed using the kubectl get node command on the master node.

admin@master:~$ kubectl get node
NAME STATUS ROLES AGE VERSION
master Ready control-plane,master 14m v1.22.7

Adding Edge Nodes to the Cluster

Once the cluster is initialized, the following command will add all the configured edge nodes to the cluster:

ansible-playbook -i ./hosts join_cluster.yml

The kubectl get node command on the master node can be used to confirm the state of the edge nodes.

admin@master:~$ kubectl get node
NAME STATUS ROLES AGE VERSION
edge1 Ready <none> 2m50s v1.22.7
edge2 Ready <none> 2m45s v1.22.7
master Ready control-plane,master 17m v1.22.7

Starting EdgeX

After adding the edge nodes to the cluster, the following command will start the EdgeX services on the edge nodes:

ansible-playbook -i ./hosts edgex_start.yml

You can confirm the status of the EdgeX microservices using the kubectl get pod command on the master node. (EdgeX micro-service containers are grouped into one Kubernetes "pod" per node.)

admin@master:~$ kubectl get pod
NAME READY STATUS RESTARTS AGE
edgex-edge1-57859dcdff-k8j6g 20/20 Running 16 1m31s
edgex-edge2-5678d8fbbf-q988v 20/20 Running 16 1m26s

Note, during initialization of the services you may see some containers restart one or more times. This is part of the timeout and retry behavior of the services waiting for other services to complete initialization and does not indicate a problem.

Sensor Nodes

In the test installation sensor nodes have been constructed using Raspberry Pi devices running a Python script as a service to read temperature and humidity from a DHT-1 sensor, and forward those readings through an LRA-1 USB dongle to a pre-configured destination.

The Python script is located in sensor/dht2lra.py, and an example service definition file for use with systemd is dht2lra.service in the same directory.

The destination edge node is configured by connecting to the LRA-1 USB dongle, for example using the tio program (tio needs to be installed using sudo apt-get install tio):

pi@raspi02:~ $ sudo tio /dev/ttyUSB0 
[tio 09:31:52] tio v1.32
[tio 09:31:52] Press ctrl-t q to quit
[tio 09:31:52] Connected
i2-ele LRA1
Ver 1.07.b+
OK
>

At the ">" prompt, enter dst=N, where N is the number in the lora_id variable for the edge node in deploy/playbook/hosts. Then enter the ssave command and disconnect from the dongle (using Ctrl+t q in the case of tio). The destination ID will be stored in the dongle's persistent memory (power cycling will not clear the value).

Running the script, either directly with python ./dht2lra.py, or using the service, will periodically send readings to the edge node. These readings should appear in the core-data database and be possible to monitor using the edgex-events-nodename channel. For example, the following command run on the master node should show the readings arriving at an edge node named "edge1":

mosquitto_sub -t edgex-events-edge1 -u edge -P edgemqtt

Verifying the Setup

Test cases for verifying the blueprint's operation are provided in the cicd/tests directory. These are Robot Framework scripts which can be executed using the robot tool. In addition, the cicd/playbook directory contains playbooks supporting setup of a Jenkins-based automated testing environment for CI/CD. For more information, consult the README.md files in those directories.

Developer Guide and Troubleshooting

EdgeX Service Configuration UI

The configuration parameters of EdgeX micro-services can be accessed through a Consul server on each edge node. The UI is accessible at the address http://node-address:8500/ui. The node address is automatically assigned by Kubernetes and can be confirmed using the kubectl get node -o wide command on the master node.

In order to access the configuration UI a login token is required. This can be acquired using the get-consul-acl-token.sh script in the edgex directory. Execute it as follows and it will print out the Consul access token:

get-consul-acl-token.sh pod-name

The pod-name parameter is the name of the EdgeX pod running on the node. This can be obtained with the kubectl get pod command on the master node. The name of the pod will be shown in the first column of the output, and will be "edgex-nodename-..."

Access the UI address through a web browser running on the master node, and click on the "log in" button in the upper right. You will be prompted to enter the access token. Copy the access token printed by the get-consul-acl-token.sh script into the text box and press enter to log in to the UI. See the EdgeX documentation and Consul UI documentation for more information.

EdgeX API Access

The EdgeX micro-services each support REST APIs which are exposed through an API gateway running on https://node-address:8443. The REST APIs are documented in the EdgeX documentation, and they are mapped to URLs under the API gateway address using path names based on the names of each micro-service. So, for example, the core-data service's ping interface can be accessed through https://node-address:8443/core-data/api/v2/ping. A partial list of these mappings can be found in the EdgeX introduction to the API gateway.

Note that the blueprint does not automatically generate signed certificates for the API gateway, so the certificate it uses by default will cause warnings if accessed using a web browser and require the -k option if using the curl tool.

There is more information about the API gateway in the EdgeX documentation.

Enabling and Disabling Optional Services

Three EdgeX micro-services can be enabled and disabled using variables in the deploy/playbook/group_vars/all/edgex.yml file. Set the variable to true to enable the micro-service the next time the edgex_start.yml playbook is run. Set the variable to false to disable that micro-service. The micro-service controlling variables are listed below:

  • device_virtual: Enable or disable the device-virtual service, provided by EdgeX Foundry, used for testing.
  • device_lora: Enable or disable the device-lora service, one of the custom services provided by this blueprint, which provides support for receiving readings and sending commands to remote sensors over LoRa low-power radio links.
  • sync_app: Enable or disable the sync-app application service, the other custom service provided by this blueprint, which provides a way to forward sensor data to other edge nodes.

Debugging Failures

Consult the sections under Troubleshooting for commands to debug failures. In particular, using the kubectl commands described in Accessing Logs, and changing the log levels of services using the configuration UI described above, which can change the logging level of running services, can be useful.

Reporting a Bug

Contact the Smart Data Transaction for CPS mailing list at sdt-blueprint@lists.akraino.org to report potential bugs or get assistance with problems.

Uninstall Guide

Stopping EdgeX

The EdgeX services can be stopped on all edge nodes using the edgex_stop.yml playbook. (It is not currently possible to stop and start the services on individual nodes.)

ansible-playbook -i ./hosts edgex_stop.yml

Confirm that the services have stopped using the kubectl get pod command on the master node. It should show no pods in the default namespace.

After stopping the EdgeX services it is possible to restart them using the edgex_start.yml playbook as usual. Note, however, that the pod names and access tokens will have changed.

Removing Edge Nodes

The edge nodes can be removed from the cluster using the following command:

ansible-playbook -i ./hosts delete_from_cluster.yml

This command should be run before stopping the cluster as described in the following section, in order to provide a clean shutdown. It is also possible to re-add the edge nodes using join_cluster.yml, perhaps after editing the configuration in the hosts file.

Stopping Kubernetes

Kubernetes can be stopped by running the following command. Do this after all edge nodes have been removed.

ansible-playbook -i ./hosts reset_cluster.yml --ask-become-pass

Stopping and Clearing the Docker Registry

If you need to stop the private Docker registry service for some reason, use the following command:

ansible-playbook -i ./hosts stop_registry.yml

With the registry stopped it is possible to remove the registry entirely. This will recover any disk space used by images stored in the registry, but means that pull_upsteam_images.yml, build_images.yml, and push_images.yml will need to be run again.

ansible-playbook -i ./hosts remove_registry.yml

Uninstalling Software Components

Installed software components can be removed with sudo apt remove package-name. See the list of installed software components earlier in this document. Python packages (cryptography and kubernetes) can be removed with the pip uninstall command.

Ansible components installed with ansible-galaxy (community.docker, kubernetes.core, community.crypto) can be removed by deleting the directories under ~/.ansible/collections/ansible_collections on the deploy node.

Removing Configuration and Temporary Data

This blueprint stores configuration and data in the following places. When uninstalling the software, these folders and files can also be removed, if present, on the master, deploy and edge nodes.

  • Master node:
    • ~/.lfedge
    • /opt/lfedge
    • /etc/mosquitto/conf.d/edge.conf
    • /usr/share/keyrings/kubernetes-archive-keyring.gpg
  • Edge node:
    • /opt/lfedge
    • /etc/docker/certs.d/master:5000/registry.crt
    • /usr/local/share/ca-certificates/master.crt
    • /etc/docker/daemon.json
    • /usr/share/keyrings/kubernetes-archive-keyring.gpg
  • Deploy node:
    • /etc/profile.d/go.sh
    • /usr/local/go
    • ~/edgexfoundry

Troubleshooting

Confirming Node and Service Status

The kubectl command can be used to check the status of most cluster components. kubectl get node will show the health of the master and edge nodes, and kubectl get pod will show the overall status of the EdgeX services. The kubectl describe pod pod-name command can be used to get a more detailed report on the status of a particular pod. The EdgeX configuration UI, described in the section EdgeX Service Configuration UI above, also shows the result of an internal health check of all EdgeX services on the node.

Accessing Logs

The main tool for accessing logs is kubectl logs, run on the master node. This command can be used to show the logs of a running container:

kubectl logs -c container-name pod-name

It can also be used to check the logs of a container which has crashed or stopped:

kubectl logs --previous -c container-name pod-name

And it can be used to stream the logs of a container to a terminal:

kubectl logs -c container-name pod-name -f

The container names can be found in the output of kubectl describe pod or in the edgex/deployments/edgex.yml file (the names of the entries in the containers list).

For the rare cases when the Kubernetes log command does not work, it may be possible to use the docker log command on the node you wish to debug.

Maintenance

Stopping and Restarting EdgeX Services

As described in the Uninstall Guide subsection Stopping EdgeX, the EdgeX services can be stopped and restarted using the edgex_stop.yml and edgex_start.yml playbooks.

Stopping and Restarting the Kubernetes Cluster

Similar to stopping and restarting the EdgeX services, the whole cluster can be stopped and restarted by stopping EdgeX, removing the edge nodes, stopping Kubernetes, starting Kubernetes, adding the edge nodes, and starting EdgeX again:

ansible-playbook -i ./hosts edgex_stop.yml

ansible-playbook -i ./hosts delete_from_cluster.yml

ansible-playbook -i ./hosts reset_cluster.yml --ask-become-pass

ansible-playbook -i ./hosts init_cluster.yml --ask-become-pass

ansible-playbook -i ./hosts join_cluster.yml

ansible-playbook -i ./hosts edgex_start.yml

Adding and Removing Edge Nodes

Edge nodes can be added an removed by stopping the cluster and editing the deploy/playbook/hosts file. The master_install.yml and edge_install.yml playbooks need to be run again to update /etc/hosts and certificates on any added nodes.

Updating the Software

Running setup_deploy.yml, master_install.yml, and edge_install.yml playbooks can be used to update software packages if necessary. Note that Kubernetes is specified to use version 1.22 to avoid problems that might arise from version instability, but it should be possible to update if so desired.

Rebuilding Custom Services

The custom services can be rebuilt by running the build_images.yml playbook in cicd/playbook. After successfully building a new version of a service, use push_images.yml to push the images to the private Docker registry. The source for the services is found in edgex/sync-app and edgex/device-lora.

License

The software provided as part of the Smart Data Transaction for CPS blueprint is licensed under the Apache License, Version 2.0 (the "License");

...

PackageLicense TypeLicense URL
bitbucket.org/bertimus9/systemstatMIThttps://bitbucket.org/bertimus9/systemstat/src/master/LICENSE
github.com/armon/go-metricsMIThttps://github.com/armon/go-metrics/blob/master/LICENSE
github.com/cenkalti/backoffMIThttps://github.com/cenkalti/backoff/blob/master/LICENSE
github.com/eclipse/paho.mqtt.golangBSD-3-Clausehttps://github.com/eclipse/paho.mqtt.golang/blob/master/LICENSE
github.com/edgexfoundry/device-sdk-go/v2Apache-2.0https://github.com/edgexfoundry/device-sdk-go/blob/master/v2/LICENSE
github.com/edgexfoundry/go-mod-bootstrap/v2Apache-2.0https://github.com/edgexfoundry/go-mod-bootstrap/blob/master/v2/LICENSE
github.com/edgexfoundry/go-mod-configuration/v2Apache-2.0https://github.com/edgexfoundry/go-mod-configuration/blob/master/v2/LICENSE
github.com/edgexfoundry/go-mod-core-contracts/v2Apache-2.0https://github.com/edgexfoundry/go-mod-core-contracts/blob/master/v2/LICENSE
github.com/edgexfoundry/go-mod-messaging/v2Apache-2.0https://github.com/edgexfoundry/go-mod-messaging/blob/master/v2/LICENSE
github.com/edgexfoundry/go-mod-registry/v2Apache-2.0https://github.com/edgexfoundry/go-mod-registry/blob/master/v2/LICENSE
github.com/edgexfoundry/go-mod-secrets/v2Apache-2.0https://github.com/edgexfoundry/go-mod-secrets/blob/master/v2/LICENSE
github.com/fatih/colorMIThttps://github.com/fatih/color/blob/master/LICENSE.md
github.com/fxamacker/cbor/v2MIThttps://github.com/fxamacker/cbor/blob/master/v2/LICENSE
github.com/go-kit/kit/logMIThttps://github.com/go-kit/kit/blob/master/log/LICENSE
github.com/go-logfmt/logfmtMIThttps://github.com/go-logfmt/logfmt/blob/master/LICENSE
github.com/google/uuidBSD-3-Clausehttps://github.com/google/uuid/blob/master/LICENSE
github.com/go-playground/localesMIThttps://github.com/go-playground/locales/blob/master/LICENSE
github.com/go-playground/universal-translatorMIThttps://github.com/go-playground/universal-translator/blob/master/LICENSE
github.com/go-playground/validator/v10MIThttps://github.com/go-playground/validator/blob/master/v10/LICENSE
github.com/go-redis/redis/v7BSD-2-Clausehttps://github.com/go-redis/redis/blob/master/v7/LICENSE
github.com/gorilla/muxBSD-3-Clausehttps://github.com/gorilla/mux/blob/master/LICENSE
github.com/gorilla/websocketBSD-2-Clausehttps://github.com/gorilla/websocket/blob/master/LICENSE
github.com/hashicorp/consul/apiMPL-2.0https://github.com/hashicorp/consul/blob/master/api/LICENSE
github.com/hashicorp/errwrapMPL-2.0https://github.com/hashicorp/errwrap/blob/master/LICENSE
github.com/hashicorp/go-cleanhttpMPL-2.0https://github.com/hashicorp/go-cleanhttp/blob/master/LICENSE
github.com/hashicorp/go-hclogMIThttps://github.com/hashicorp/go-hclog/blob/master/LICENSE
github.com/hashicorp/go-immutable-radixMPL-2.0https://github.com/hashicorp/go-immutable-radix/blob/master/LICENSE
github.com/hashicorp/golang-lru/simplelruMPL-2.0https://github.com/hashicorp/golang-lru/blob/master/simplelru/LICENSE
github.com/hashicorp/go-multierrorMPL-2.0https://github.com/hashicorp/go-multierror/blob/master/LICENSE
github.com/hashicorp/go-rootcertsMPL-2.0https://github.com/hashicorp/go-rootcerts/blob/master/LICENSE
github.com/hashicorp/serf/coordinateMPL-2.0https://github.com/hashicorp/serf/blob/master/coordinate/LICENSE
github.com/leodido/go-urnMIThttps://github.com/leodido/go-urn/blob/master/LICENSE
github.com/mattn/go-colorableMIThttps://github.com/mattn/go-colorable/blob/master/LICENSE
github.com/mattn/go-isattyMIThttps://github.com/mattn/go-isatty/blob/master/LICENSE
github.com/mitchellh/consulstructureMIThttps://github.com/mitchellh/consulstructure/blob/master/LICENSE
github.com/mitchellh/copystructureMIThttps://github.com/mitchellh/copystructure/blob/master/LICENSE
github.com/mitchellh/mapstructureMIThttps://github.com/mitchellh/mapstructure/blob/master/LICENSE
github.com/mitchellh/reflectwalkMIThttps://github.com/mitchellh/reflectwalk/blob/master/LICENSE
github.com/OneOfOne/xxhashApache-2.0https://github.com/OneOfOne/xxhash/blob/master/LICENSE
github.com/pebbe/zmq4BSD-2-Clausehttps://github.com/pebbe/zmq4/blob/master/LICENSE.txt
github.com/pelletier/go-tomlApache-2.0https://github.com/pelletier/go-toml/blob/master/LICENSE
github.com/tarm/serialBSD-3-Clausehttps://github.com/tarm/serial/blob/master/LICENSE
github.com/x448/float16MIThttps://github.com/x448/float16/blob/master/LICENSE
golang.org/x/crypto/sha3BSD-3-Clausehttps://pkg.go.dev/golang.org/x/crypto/sha3?tab=licenses
golang.org/x/netBSD-3-Clausehttps://pkg.go.dev/golang.org/x/net?tab=licenses
golang.org/x/sysBSD-3-Clausehttps://pkg.go.dev/golang.org/x/sys?tab=licenses
golang.org/x/textBSD-3-Clausehttps://pkg.go.dev/golang.org/x/text?tab=licenses
gopkg.in/yaml.v3MIThttps://github.com/go-yaml/yaml/blob/v3/LICENSE

References

Definitions, Acronyms and Abbreviations

...